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resumo Os robôs humanóides oferecem uma plataforma versátil para a
exploração da manipulação colaborativa, mas a sua complexidade
inerente, resultante do elevado número de graus de liberdade, das
restrições de equilíbrio e das limitações dos sensores, torna a
coordenação particularmente desafiante. Esta dissertação apresenta o
design, a implementação e a avaliação de uma estrutura modular que
integra visão e controlo, permitindo que pequenos robôs humanóides
percebam e se aproximem de objetos em preparação para tarefas
colaborativas.
O sistema proposto combina a perceção global, fornecida por uma
câmara externa posicionada acima do ambiente, com um refinamento
local através da câmara embutida em cada robô. A visão externa
permite a consciência espacial multi-robô, a deteção de objetos e a
prevenção de colisões, enquanto a visão a bordo do robô oferece
precisão detalhada para o alinhamento a curta distância. Um conjunto
de módulos baseados em ROS processa estas entradas visuais,
gerando comandos de alto nível que são transmitidos aos robôs,
onde módulos de controlo de baixo nível os executam através de
controladores personalizados de marcha, movimento e articulações.
Para lidar com inconsistências na locomoção devido à tração limitada
das solas metálicas dos robôs, foram realizadas experiências com
materiais alternativos nos pés. Os resultados demonstraram que a
adição de camadas de borracha de neoprene e de alcatifa melhorou
significativamente a estabilidade e a repetibilidade da marcha e da
rotação, reduzindo o deslizamento e a assimetria entre as curvas
para a esquerda e para a direita. Além disso, as experiências
de visão confirmaram que a utilização combinada de câmaras
externas e embarcadas mitiga eficazmente as limitações de cada fonte
isoladamente, conduzindo a um comportamento de aproximação mais
fiável.
Os resultados deste trabalho estabelecem uma base sólida para futuras
investigações na área do transporte cooperativo de objetos com robôs
humanóides. Embora persistam desafios, particularmente no que diz
respeito à dependência de filtros de cor, à sensibilidade à iluminação e
à escalabilidade, a estrutura proposta demonstra que a combinação
de visão em múltiplas camadas com controlo modular constitui um
caminho eficaz para alcançar uma colaboração multi-robô fiável.



keywords Humanoid robots, Multi-robot coordination, Vision-based control,
Object detection and localization, Cooperative manipulation.

abstract Humanoid robots offer a versatile platform for exploring collaborative
manipulation, but their inherent complexity, stemming from high
degrees of freedom, balance constraints, and sensor limitations, makes
coordination particularly challenging. This thesis presents the design,
implementation, and evaluation of a modular framework that integrates
vision and control to enable small humanoid robots to perceive and
approach objects in preparation for collaborative tasks.
The proposed system combines global perception, provided by an
external overhead camera, with local refinement through each robot’s
onboard camera. External vision enables multi-robot spatial awareness,
object detection, and collision avoidance, while onboard vision provides
fine-grained precision for close-range alignment. A set of ROS-
based modules processes these visual inputs, generating high-level
commands that are transmitted to the robots, where low-level control
modules execute them through customized walking, motion, and joint
controllers.
To address inconsistencies in locomotion due to limited traction from the
robots’ metal soles, experiments were conducted with alternative foot
materials. Results demonstrated that the addition of neoprene rubber
and carpet layers significantly improved stability and repeatability of
walking and rotation, reducing slippage and asymmetry between left
and right turns. Furthermore, vision experiments confirmed that the
combined use of external and onboard cameras effectively mitigates
the limitations of either source alone, leading to more reliable approach
behavior.
The outcomes of this work establish a robust foundation for future
research in cooperative object transportation with humanoid robots.
While challenges remain, particularly regarding reliance on color filters,
sensitivity to lighting, and scalability, the framework demonstrates that
combining multi-layered vision with modular control is an effective
pathway toward reliable multi-robot collaboration.



acknowledgement of use of
AI tools

Recognition of the use of generative Artificial Intelligence
technologies and tools, software and other support tools.

I acknowledge the use of ChatGPT 4 and 5 (Open AI,
https://chat.openai.com) to improve the initial structure of the
dissertation and to proofread, sumarize and embellish the final
draft.



Contents

Contents i

List of Figures iv

List of Tables v

Glossary vi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem description and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 4

2.1 Vision in Humanoid Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Object Detection and Localization . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Learning-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Multi-Camera and Sensor Fusion Approaches . . . . . . . . . . . . . . . . . . 6

2.2 Control in Humanoid Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Control, Locomotion and Balance . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Trajectory Planning and Collision Avoidance . . . . . . . . . . . . . . . . . . 8

2.2.3 Multi-Robot Coordination and Communication . . . . . . . . . . . . . . . . . 8

2.3 Multi-Agent Reinforcement Learning in Robotics . . . . . . . . . . . . . . . . . . . . . 9

2.4 Summary and Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Framework and Experimental Setup 12

3.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Familiarization and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 External Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

i



3.4.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Humanoid Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5.1 NAO Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.2 Darwin-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6.1 Simulators Use - Choregraphe . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6.2 Simulators Use - Webots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Vision Framework 25

4.1 Initial Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 External Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Baseline Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Increase Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 Get Robot’s Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.4 Changing the polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.5 Create more contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Internal Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 Adaptation for our case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.3 Integration into the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.4 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Final Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Control Framework 40

5.1 Initial Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Central Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 ControlDarwinNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Darwin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Key-Hardware Components of Darwin-OP . . . . . . . . . . . . . . . . . . . . 43

5.4.2 Improve Locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Darwin Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5.1 Changing gait parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ii



5.6.2 Colision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions and Future Work 54

6.1 Summary of Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References 57

A Additional content 64

iii



List of Figures

3.1 Example of 2 humanoid robots picking up an aluminum bar. . . . . . . . . . . . . . . . . 13

3.2 Image depicting the sensors available on both the NAO and Darwin-OP . . . . . . . . . . 17

3.3 Possible grippers for the Darwin-OP hand . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Normal Interface when using Choregraphe . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Normal Interface when using Webots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 The result of the baseline method: Simply applying a color filter for the different shades of

grey to differentiate between the robot, the object and the floor . . . . . . . . . . . . . . 29

4.2 Variation of the angle between the robot and the object read in a interval of 60 seconds . 29

4.3 Colors applied to the object and the robot for easier detection . . . . . . . . . . . . . . . 30

4.4 Result of color filtering red and blue, obtaining the robot and object markers . . . . . . . 30

4.5 Representation of how the angle between the robot (with the marker on it’s head), and the

object is calculated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Plot of the values of the angle and the robot calculated in 60 seconds, using the adition of

the blue triangle on top of the robot’s head . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Triangle can help correctly read the angle between the robot and the object, but can also

lead to an incorrect reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8 Plot of the values of the angle and the robot calculated in 60seconds . . . . . . . . . . . . 34

4.9 T shape can help correctly read the angle between the robot and the object, but can also

lead to an incorrect reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.10 The robot with the "hat" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.11 Plot of the values of the angle and the robot calculated in 60seconds . . . . . . . . . . . . 36

5.1 Picture of the Darwin-OP with the neoprene rubber feet. . . . . . . . . . . . . . . . . . . 47

5.2 Picture of the Darwin-OP with the green carpet feet. . . . . . . . . . . . . . . . . . . . . 48

iv



List of Tables

4.1 Results of applying both the vision modules when the robot is in various positions. Each

entry corresponds to (d, θ), where d is the distance(pixels) and θ is the angle (degrees) . . 38

4.2 Distance and Resulting Angle when the system passed to Autonomous Mode, and when

decided it was close enough to pick up the object. . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Results of motion experiments without any soles. Each entry corresponds to (x, y, θ), where

x and y are translations (cm) and θ is rotation (degrees). . . . . . . . . . . . . . . . . . . 45

5.2 Results of motion experiments with neoprene soles. Each entry corresponds to (x, y, θ),

where x and y are translations (cm) and θ is rotation (degrees). . . . . . . . . . . . . . . 47

5.3 Results of motion experiments with carpet soles. Each entry corresponds to (x, y, θ), where

x and y are translations (cm) and θ is rotation (degrees). . . . . . . . . . . . . . . . . . . 48

v



Glossary

vi



CHAPTER 1
Introduction

This introductory chapter will talk about the motivation behind this work and it’s main
objectives, as well as talk a bit about the structure of the work.

1.1 Motivation

As robotic systems become more prevalent in everyday environments, like elder care,
industry or even education, Humanoid robots in particular have gained increased attention
both in research and in pratical applications due to their potential to operate in environments
designed for humans, as their anthropomorphic form allows them to interact with our tools,
objects and spaces without the need to adapt said tools, objects or spaces to their use, in
contrast to the use of other types of robots.

However, the complexity of such environments more easily exceeds the capabilities of a
single robot acting alone. To overcome this limitations, multi-robot systems, that enable
robots to collaborate to extend the functional range of each individual unit, have emerged.
With them, it is possible to tackle tasks that would otherwise be infeasible. Coordination
becomes particularly important in scenarios where tasks must be divided, synchronized, or
shared—such as manipulating large objects, covering wider areas, or compensating for limited
sensing. As such, the ability for multiple humanoid robots to work together in a coordinated
and intelligent manner is more essential than ever.

1.2 Problem description and Objectives

One of the central challenges in multi-robot coordination is perception. Robots must be
able to perceive not only the environment but also each other, with sufficient accuracy and
timeliness to support real-time decision-making. Vision-based control provides a rich source
of information for this purpose but comes with its own set of challenges, including occlusion,
limited field of view, and the need for accurate calibration.

While many existing systems rely on either onboard cameras or external tracking systems,
in this work we will try to leverage the combined strengths of both. Onboard vision offers
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robot-localized perception, while external vision can provide a broader, more stable view of
the environment. Integrating both systems presents an opportunity to improve reliability,
precision, and task coordination.

So, in this thesis we will develop a system that enables two humanoid robots to perform
coordinated tasks using both internal (onboard) and external vision systems. The goal is to
design a perception and control framework that uses both visual inputs to guide the actions
of both robots in a shared environment.

This involves solving several subproblems:
• How to acquire and process visual information from both internal and external sources

in real time;
• How to establish communication and coordination strategies between the robots and a

central controller;
• How to plan and execute collaborative behaviors based on the combined visual input.
The primary cooperative task explored in this work involves two humanoid robots working

together to transport an aluminum bar from one location to another within the shared
workspace. This task was chosen as it embodies the challenges of physical coordination,
mutual awareness, and synchronized motion, all of which are fundamental to effective multi-
robot collaboration. Successful execution of this task demands that both robots maintain a
shared understanding of the bar’s position and orientation, adapt their movements in real
time, and respond to subtle environmental changes, making it an ideal scenario to evaluate
the effectiveness of the proposed vision-based coordination system.

This work targets small-scale humanoid robots, like the Darwin-OP platform, which
are commonly used in academic research but face significant limitations in sensing and
computation and the NAO platform, which is also very used in academic research and learning.
The system must work within these constraints while demonstrating tangible improvements
in task execution when using dual vision systems.

1.3 Structure

The remainder of this thesis is organized into several chapters, each addressing a specific
aspect of the work and progressively building toward the development and validation of the
proposed framework for collaborative humanoid robots.

• State of the Art: is chapter reviews the current literature on humanoid robot per-
ception and control, with a particular focus on multi-agent coordination and object
transportation. Both traditional computer vision approaches and recent deep learning
methods are discussed, along with control strategies ranging from physics-based models
to multi-agent reinforcement learning.

• Framework and Experimental Setup: This chapter introduces and talks about the
process of understanding the robots available, the NAO and Darwin-OP. Their main
characteristics, advantages, and limitations are described, as well as the software tools
available and employed for simulation and development, such as Webots, ROS, and
Choregraphe.
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• Vision Framework: This chapter details the perception pipeline developed in the project.
It describes the use of both external and onboard cameras, the image-processing strategies
for object and robot detection, and the challenges of ensuring reliable localization under
occlusion and lighting variability.

• Control Framework: This chapter presents the control architecture designed to govern
robot behavior. Both the high-level commands managed by the central controller and
the low-level modules implemented on the Darwin robots are discussed, along with the
strategies for motion execution, balance preservation, and autonomous operation.

• Conclusions and Future Work: The thesis concludes with a summary of the main
contributions, a discussion of the limitations of the proposed approach, and suggestions
for directions in which the work can be extended, including cooperative transportation
and improvements in communication and perception.

3



CHAPTER 2
State of the Art

In the field of humanoid robotics, collaborative object transportation poses a complex challenge
that spans perception, control, and coordination. This chapter presents an overview of current
approaches to visual perception and multi-robot coordination, particularly in the context of
humanoid embodiments with many degrees of freedom. We examine both classical and modern
techniques in object detection and robotic control, with a particular focus on machine learning-
based coordination frameworks.

2.1 Vision in Humanoid Robots

2.1.1 Object Detection and Localization

A fundamental prerequisite for enabling robots to interact with their environment is the
reliable detection and localization of objects. In humanoid robotics, this challenge is amplified
by the complexity of unstructured environments, varying lighting conditions, and frequent
occlusions. Traditional computer vision approaches remain highly relevant in this context
due to their simplicity, low computational cost, and suitability for real-time applications on
resource-constrained platforms such as small humanoid robots.

One of the most common strategies is color-based segmentation, where objects are identified
based on predefined color ranges [1][2] [3] [4] [5] [6] [7]. By transforming the image from the
RGB space to HSV, the hue, saturation, and brightness can be separately controlled, making
it easier to account for lighting variations and shadows. Once the pixels within the target color
range are extracted, morphological operations such as erosion and dilation are often applied
to reduce noise and produce more coherent blobs, from which centroids can be computed to
estimate object positions.

Shape-based methods provide an alternative or complementary approach. Techniques
such as contour detection, Hough transforms, or bounding box fitting can be used to infer
object orientation and approximate geometry. In scenarios where both the robots and the
objects share similar visual properties (e.g., metallic reflectivity), these classical techniques
can struggle due to ambiguous segmentation and poor contrast with the background.
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To overcome such limitations, many works introduce fiducial markers (e. g. , AprilTags,
ARToolkit markers, or even simple colored strips), which provide high contrast, geometric
cues, and sometimes encoded IDs for object or robot identification [8] [9]. These solutions
are particularly attractive in laboratory settings, where repeatability and robustness are
prioritized over full generalization.

While traditional techniques do not match the flexibility and adaptability of modern
learning-based methods, they can still be improved upon and remain a pragmatic choice for
lightweight platforms and controlled environments, where their robustness and low latency
are advantageous [10].

2.1.2 Learning-Based Approaches

When exploring deep learning–based approaches for vision, one of the most widely adopted
methods is YOLO (You Only Look Once) [11] , a real-time object detection and image
segmentation framework. YOLO has become a benchmark in robotic perception due to
its balance of speed, accuracy, and ease of deployment. Unlike traditional region-proposal
methods, YOLO treats detection as a single regression problem, directly predicting bounding
boxes and class probabilities from full images in one evaluation. This architecture makes it
particularly well-suited for real-time applications in robotics, where decisions must be taken
within milliseconds.

YOLO has already demonstrated effectiveness in industrial robotic systems, especially
from version YOLOv5 onward, where its performance in terms of accuracy and usability has
made it attractive for integration in perception pipelines [12]. Moreover, its adaptability
has been showcased in specialized domains, such as text-guided object detection [13], and,
importantly, in applications on humanoid robots themselves. For instance, Biswas et al. [14]
and Sun et al. successfully deployed YOLO on a NAO platform for reliable real-time detection
of objects, highlighting its relevance to scenarios similar to ours, and there are also other
similar works [15].

Architecturally, YOLO follows a deep convolutional design reminiscent of GoogLeNet,
comprising 24 convolutional layers, four max-pooling layers, and two fully connected layers.
Later versions, such as YOLOv4, YOLOv5, and more recently YOLOv7/YOLOv8, incorporate
advanced elements such as residual connections, cross-stage partial networks (CSPNet), and
anchor-free detection heads, improving both efficiency and robustness in cluttered or dynamic
environments.

While other state-of-the-art detectors such as Faster R-CNN (Region-based Convolutional
Neural Network) [16] [17] [18] [19] or SSD(Single Shot MultiBox Detector) [20] [21] [22] [23] [24]
[25] have been extensively used in computer vision and robotics , they often involve trade-offs:
Faster R-CNN provides higher accuracy but at the cost of computational speed, whereas SSD
achieves faster inference but can struggle with small object detection. In contrast, YOLO
offers a strong balance between accuracy, speed, and implementation simplicity, making it
particularly suitable for real-time multi-robot coordination tasks.

These qualities make YOLO a strong candidate for integration in humanoid robot vision
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pipelines, particularly when seeking to move beyond handcrafted features such as color filtering,
and toward more robust, scalable solutions.

2.1.3 Multi-Camera and Sensor Fusion Approaches

A recurring challenge in robotic vision is balancing local precision with global awareness.
While onboard cameras provide a robot with a direct perspective for fine-grained tasks, their
field of view is inherently limited, often subject to occlusions from the robot’s own body or the
manipulated object, and can also suffer from reduced stability and precision when the robot is
in motion. Conversely, external cameras, whether mounted overhead or strategically placed in
the environment, can capture the global scene but often lack the close-range accuracy needed
for manipulation, and can similarly suffer from occlusions.

For this reason, many recent works in humanoid and multi-robot coordination have
explored sensor fusion approaches, where local and global information are combined to
obtain a more reliable and adaptable perception system [26]. Overhead cameras have been
successfully integrated into soccer robotics platforms (e.g., RoboCup) to provide a better
global positioning and team coordination [27], while onboard vision handles more precisely
immediate interactions with the ball or obstacles [28]. However, in most cases they appear
combined with other types of sensors. Similarly, in cooperative manipulation, fusing external
cameras with robot-mounted sensors improves robustness to occlusion and lighting variability,
and reduces the reliance on a single point of failure.

Typical strategies for fusion include:
• Hierarchical control, where global vision provides long-range navigation goals, and local

vision ensures precise alignment during execution.
• Probabilistic fusion techniques, such as particle filters or Kalman filters, to merge

uncertain detections from different perspectives.
• Learning-based fusion, where neural networks are trained to weight and combine different

streams of visual input depending on the context.
In the context of this thesis, the combined use of the external overhead camera and the

Darwin-OP’s onboard camera follows a similar principle. The external camera ensures global
coordination between multiple robots and avoids inter-robot collisions, while the onboard
camera refines positioning and alignment when approaching the object for manipulation.
This dual-layer vision approach leverages the strengths of each modality and mitigates their
weaknesses, offering a practical solution for robust perception in cooperative humanoid
robotics.

2.2 Control in Humanoid Robots

2.2.1 Control, Locomotion and Balance

Modern humanoid robot control frameworks are designed with modular architectures
that separate locomotion, balance, and perception into interconnected yet independently
manageable subsystems [29]. This modularity allows for adaptable gait generation and stability
control, enabling researchers to fine-tune walking behaviors without reconfiguring the entire
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control stack. However, the inherent uncertainty introduced by multi-directional forces acting
on the robot’s body, such as ground reaction forces, inertia during motions, or other external
disturbances, make it a challenge to create frameworks to sucessfully control the robots during
tasks execution or locomotion, while still mantaining coordination and balance [30] [31] [32]
[33] [34] [35].

Locomotion is one of the defining challenges in humanoid robotics, as these systems
must continuously maintain balance while walking, turning, or manipulating objects. Unlike
wheeled robots, humanoids rely on a dynamically stable gait to remain upright, requiring the
coordination of multiple joints and the constant adjustment of their center of mass (CoM).
Even small perturbations, such as uneven flooring, external pushes, or the shifting of weight
while carrying an object, can destabilize the robot if not properly accounted for.

A common foundation for humanoid balance is the Zero Moment Point (ZMP) criterion
[36] [37], first introduced by Vukobratović [38] [39] and later refined into practical control
methods. ZMP-based walking ensures that the projection of the robot’s CoM remains within
the support polygon formed by its feet, thereby preventing tipping [40]. Numerous gait
generation frameworks for humanoid robots, including NAO and Darwin-OP [41] [42], employ
ZMP controllers or derivatives such as the Linear Inverted Pendulum Model (LIPM) [43] [44]
to generate stable trajectories.

In addition to ZMP control, capture point methods and model predictive control (MPC)
have been proposed for improved robustness [45]. Capture point control enables the robot
to “catch” its balance after disturbances by modifying step placement, while MPC predicts
the future state of the robot over a time horizon, adjusting footstep locations and CoM
trajectories accordingly. These approaches have been particularly effective in dealing with
dynamic perturbations and have been applied in humanoids ranging from small-scale robots
to human sized robots.

When locomotion is coupled with manipulation, the challenge increases. Adjustments of
the arms shift the center of mass and introduce torques that affect balance. For this reason,
some frameworks integrate whole-body control (WBC) approaches [46] [47], where locomotion
and arm motions are solved in a unified optimization problem. This is particularly relevant in
collaborative tasks, where robots must move while carrying or stabilizing objects together.

For small humanoids like Darwin-OP, locomotion modules are often simplified due to
hardware constraints, relying on pattern generators or precomputed walking motions. However,
modifications to allow independent arm movements, as required for carrying an object, highlight
the importance of balancing upper- and lower-body coordination even in constrained platforms.

Overall, locomotion and balance research continues to evolve from rule-based approaches
(like ZMP) toward predictive, optimization-based methods, many of which are now being
enhanced through reinforcement learning [48]. In the context of this thesis, the emphasis
lies on ensuring that locomotion remains consistent and stable enough to allow cooperative
manipulation, despite hardware limitations and surface irregularities.
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2.2.2 Trajectory Planning and Collision Avoidance

Beyond maintaining balance, humanoid robots must also plan and execute trajectories that
guide them toward a goal while avoiding collisions with obstacles and, in multi-robot scenarios,
with each other. Unlike wheeled robots, trajectory planning for humanoids is complicated by
the need to consider step placement, body posture, and dynamic stability at every moment of
motion.

Classical approaches to trajectory generation often rely on predefined walking patterns
combined with simple obstacle avoidance strategies, such as potential fields or vector field
histograms [49] [50] [51] or fuzzy control [52]. While computationally efficient, these methods
may struggle with complex environments or when precise coordination between multiple
agents is required.

More advanced approaches incorporate kinematic and dynamic models into the trajectory
planning process. By predicting feasible step locations and the evolution of the robot’s center
of mass, planners can generate dynamically consistent walking paths. In particular, methods
based on the Linear Inverted Pendulum Model (LIPM) have been extended to handle step
timing and obstacle avoidance simultaneously.

In multi-robot contexts, coordination introduces further challenges. Robots must share
workspace information and adjust trajectories in real time to prevent interference. Approaches
such as reciprocal velocity obstacles (RVO) [53] [54] [55] [56] and optimal reciprocal collision
avoidance (ORCA) [57] [58] have been successfully applied in multi-agent navigation, allowing
each robot to locally adapt its velocity to avoid collisions while maintaining global coordination.
In humanoid robotics, these concepts are often integrated with balance constraints to ensure
collision-free yet stable motions.

More recent works explore learning-based methods, where policies for navigation and
obstacle avoidance are learned through reinforcement learning or imitation learning. While
promising in simulation, these approaches face challenges when transferring to physical
humanoids due to noise, model inaccuracies, and limited onboard computation.

In this thesis, trajectory planning is addressed from a practical standpoint: the external
camera provides global position estimates of both robots and the object, while high-level
commands (e.g., “turn left,” “walk forward”) guide the robots along safe paths. Collision
avoidance is achieved primarily through global awareness, with the external vision ensuring
that robots do not interfere with each other, while fine adjustments near the object are handled
locally by onboard vision.

2.2.3 Multi-Robot Coordination and Communication

When multiple humanoid robots operate in a shared environment, the challenge extends
beyond individual locomotion and trajectory planning [59] [60]. Robots must also coordinate
their actions to achieve shared objectives, avoid interfering with one another, and adapt to
dynamic changes in their surroundings [61]. Effective coordination therefore requires both
communication mechanisms and decision-making frameworks that balance global goals with
local autonomy, allowing the robots to reach new heights of tasks available [62].
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Early approaches to multi-robot coordination often relied on centralized architectures,
where a single controller computed trajectories for all robots and distributed commands
accordingly. While this ensures globally consistent decisions, centralized schemes suffer from
scalability issues, single points of failure, and high communication demands.

By contrast, decentralized methods allow each robot to make decisions based on its own
perception while exchanging information with its peers. This can be achieve by a Symmetry
or Leader-Follower type of cooperation [63] [64] [65] Techniques such as behavior-based
coordination and market-based task allocation have demonstrated flexibility in distributing
roles and responsibilities among agents. In collaborative manipulation, however, decentralized
approaches must ensure that local actions remain dynamically compatible, particularly when
robots share physical contact with the same object.

Communication plays a crucial role in enabling these strategies. Standard protocols include
TCP/IP and UDP, which trade off reliability and latency, as well as higher-level middleware
such as ROS topics and services, which provide structured message passing between processes.
More recent research has explored ad hoc wireless networks and low-latency communication
frameworks for robot teams operating in dynamic environments.

In the context of humanoid robots, coordination is further constrained by balance and
motion stability. For example, two robots approaching an object must not only avoid collisions
but also synchronize their arrival times and postures to enable cooperative actions such as
lifting or pushing [66]. Reinforcement learning has been applied to such problems, enabling
robots to jointly optimize movement strategies through trial and error. However, physical
humanoid platforms often require hybrid solutions that combine robust communication with
simplified, rule-based coordination to guarantee safety.

In this thesis, a hybrid centralized approach is adopted. A central controller ensures
global consistency by monitoring positions through an external camera and issuing commands
to each robot. At the same time, local autonomy, activated when robots are close to the
object, allows for fine-tuned adjustments without overloading the communication channel.
This balance provides both robustness and flexibility, ensuring that coordination remains
stable even in the presence of sensor noise or communication delays.

2.3 Multi-Agent Reinforcement Learning in Robotics

Reinforcement Learning (RL) has been increasingly applied to robotics due to its capacity
to learn adaptive behaviors directly from interaction with the environment [67] [68] [69] [70]
[71] [72].

When extended to multi-robot systems, it gives rise to Multi-Agent Reinforcement Learning
(MARL), where each robot (agent) must not only optimize its own policy but also account for
the actions of others. Compared to single-agent RL, MARL introduces additional complexity
due to issues such as non-stationarity (as agents learn simultaneously, the environment keeps
changing), credit assignment (determining which agent’s action contributed to a reward), and
scalability with larger teams [73].

9



Several paradigms have been proposed. A straightforward strategy is Centralized Training
and Execution, in which a single controller learns and issues commands for all agents using full
state information [74]. While this ensures tight coordination, it scales poorly as the number of
agents grows and creates a single point of failure. To overcome these limitations, the widely
adopted Centralized Training with Decentralized Execution (CTDE) paradigm was introduced,
where agents are trained with access to global state information but operate independently at
runtime [75] [76]. This approach underpins methods like MADDPG and QMIX [77] [78], which
have been shown effective in tasks requiring high coordination. In contrast, fully decentralized
learning relies only on local observations, enabling better scalability but often at the cost of
reduced coordination [79]. A third trend, communication-aware MARL, allows agents to learn
what and when to share information, which is particularly relevant in multi-robot systems
with bandwidth or latency constraints.

Applications of MARL in robotics include multi-robot navigation and collision avoidance
in crowded environments, cooperative manipulation where multiple agents jointly transport or
manipulate objects, and task allocation where roles emerge dynamically from learned policies
. These advances highlight MARL’s potential for complex, dynamic, and distributed robotic
systems.

Nevertheless, challenges remain for its deployment in humanoid robotics. Training requires
large amounts of data, making real-world exploration infeasible without simulation, while sim-
to-real transfer introduces robustness issues. Furthermore, the unstable dynamics and balance
requirements of humanoids pose additional difficulties compared to wheeled or fixed-base robots.
Despite these limitations, MARL presents a promising pathway for enabling autonomous,
scalable cooperation in humanoid teams, complementing more traditional centralized control
strategies.

2.4 Summary and Research Gap

The state of the art in vision-based control and multi-robot coordination highlights both
the rapid progress and the remaining challenges in deploying humanoid robots for collaborative
tasks. On the perception side, traditional computer vision techniques remain valuable for
simple environments with well-defined color or shape features, while deep learning approaches,
such as YOLO, have greatly expanded robustness and adaptability under complex and dynamic
conditions. However, these methods often come at the cost of computational demand, dataset
requirements, and reduced interpretability.

In locomotion and balance, extensive research has demonstrated that humanoid robots
can achieve stable gaits and object manipulation even under uncertainty, but issues such as
slippage, ground unevenness, and body coordination remain critical, particularly in small
humanoid robots where hardware constraints are more severe. These challenges underscore
the need for lightweight solutions that carefully integrate perception with control.

Finally, multi-agent reinforcement learning provides powerful frameworks for enabling
robots to cooperate in transporting and manipulating objects. Centralized approaches deliver
strong coordination but scale poorly; decentralized strategies scale better but often lack tight

10



synchrony; and CTDE offers a promising compromise by combining centralized learning with
decentralized autonomy. The choice of paradigm ultimately depends on the trade-off between
coordination quality, scalability, and real-time feasibility.

In summary, while the field has produced numerous robust techniques for perception,
control, and cooperation, gaps remain in integrating these components into cohesive systems
capable of operating reliably in real-world scenarios. These insights directly motivate the
approach of this thesis, which seeks to combine global and local vision with modular control
strategies in order to achieve reliable collaborative object transportation using humanoid
robots.
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CHAPTER 3
Framework and Experimental Setup

This chapter will serve to present the conditions in which the work was done, more specifically
the environment, the robots hardware and software available, and simulation. The importance
of the work mentioned in this chapter cannont be overstated as it is where the conditions for
all the posterior work are done.

3.1 Task Definition

The overall goal of this work is the design and validation of a modular framework that
enables small humanoid robots to prepare for and execute collaborative object manipulation
tasks. This complex process is broken down into a structured four-phase pipeline, where
the responsibilities of global perception, local control, and coordinated motion are clearly
separated. The objective is for two humanoid robots to cooperatively transport an aluminum
bar (placed on a support) to a new designated support location. The general approach is
structured as follows:

• Element Detection and Global Awareness: The system first detects all key elements: the
two robots, the aluminum bar, and the two support locations, within the environment.
This is achieved robustly using an external overhead camera and color markers combined
with standard computer vision techniques. By leveraging a fixed, top-down view and
geometric markers, the system simplifies the perceptual challenge, eliminating the need
for complex, real- time extrinsic calibration between the camera and the robots.

• Coarse Approach and Assignment: Using the relative 2D information derived from the
markers, the robots are guided to approach the target object. A simple proximity rule
(based on distance in pixels) is used to assign each robot to a specific end of the object.
This phase ensures the robots achieve a coarse alignment, preparing them for the object
elevation.

• Coordinated Object Elevation: Once the robots are within close proximity and roughly
aligned, they transition to a local control mode. Here, the robots use their onboard
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cameras to refine their arm movements and achieve the precision needed to coordinately
lift the object from its support, as illustrated in Figure 3.1.

Figure 3.1: Example of 2 humanoid robots picking up an aluminum bar.

• Coordinated Transport and Releasing: The final phase involves planning a smooth
trajectory for the cooperative transport of the object to the new support location.
During this movement, the system must ensure stability and may integrate sensor data
(such as onboard cameras or force sensors, if available) to monitor the object’s orientation
and correct for any trajectory deviations before precisely placing the bar onto the target
support.

3.2 Familiarization and Setup

Before implementing the coordinated multi-robot system, a significant portion of the initial
work was dedicated to understanding and configuring the tools and hardware required for
the project. One of the things to evaluate were the conditions of the physical encountered in
which the robots would operate. All of the work for this dissertation was developed in the
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LAR of University of Aveiro, and that is where the robot’s workstation is located. Factors
such as floor texture, lighting conditions, and available space were semi-constant during the
project and were analysed to identify any constraints that could affect the tasks of the robots
via affecting locomotion or vision processing.

In parallel, we also assessed the robot’s conditions. Initially, we had available a NAO v5
robot and a Darwin-OP, but with the possibility to use 2 Darwin-OPs instead. Establishing
a reliable communication pipeline was also an important part of this stage. This included
establish a reliable communication pipeline to a central controller, and becoming familiar with
the robot’s API and the available motion and vision frameworks. With them, basic tests were
conducted to validate robot connectivity and hardware conditions, such as the state of the
battery or the motors, using motion commands.

The system’s modular architecture is designed to manage the transition between global
(external camera) and local (onboard camera) perception, ensuring reliable performance across
all four phases. This four-phase approach forms the structural backbone of the remaining
dissertation. The core perceptual components, encompassing Phase 1 (Element Detection)
and the initial guidance for Phase 2 (Coarse Approach), are detailed and evaluated within
Chapter 4: Dual-Vision Approach. This includes the development and validation of the
external camera system and the integration with the onboard vision modules. Conversely,
the implementation of the physical actions, namely the final approach refinement, Phase 3
(Coordinated Object Elevation), and the execution of Phase 4 (Coordinated Transport), is
the focus of Chapter 5: Motion Control. This chapter addresses the locomotion algorithms,
the stability improvements made to the robot platforms, and the low-level control necessary
for stable, reliable cooperative manipulation.

This setup phase, although not directly part of the system’s final functionality, was
crucial in ensuring that the robots could be safely and reliably used for the experiments
described in later chapters. It also provided valuable insights into the limitations and practical
considerations of working with humanoid robots in a real-world setting.

3.3 Environment

The laboratory environment in which the experiments were conducted provided relatively
stable conditions overall, but it was not without certain constraints that influenced robot
performance. The illumination in the lab was generally consistent, with a mix of artificial
lighting and natural light from nearby windows. However, during particularly sunny days,
increased ambient light caused the floor to reflect more light than usual, which occasionally
interfered with the vision system’s performance, as both the robots and the obeject to transport
were made of metal.

The floor surface, while overall flat and level, had a mineral-like texture that contributed
to these light reflections. This subtle sparkling effect, caused by fine reflective particles
embedded in the surface, introduced small fluctuations in brightness and contrast across
captured images. While these effects were not severe, they required some tuning of the vision
algorithms, especially in tasks involving thresholding or color segmentation.
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In addition to its reflective properties, the grey-colored floor included minor surface fissures
and cracks distributed unevenly across the workspace. Although not large enough to obstruct
movement, these irregularities occasionally affected the robots’ foot placement during walking
or turning maneuvers. To minimize disruptions, key task areas were selected to avoid the
most uneven sections.

Overall, the environment presented a mostly controlled but realistically imperfect setting,
providing useful insights into how vision-based robotic systems cope with subtle environmental
variations. These observations informed several of the design and implementation decisions
detailed in subsequent chapters.

The aluminum bar, due to its rigid structure, moderate weight, and reflective surface,
presents both mechanical and perceptual challenges: it requires precise positioning and force
sharing between the robots during manipulation, while also potentially introducing visual
noise due to light reflections.

3.4 Framework

3.4.1 External Camera

The external camera was rigidly mounted at a height of 180 cm,. This setup allows for
the assumption of an approximated orthographic projection of the floor, which simplifies the
overall complexity, avoiding the need for a full 3D extrinsic calibration.

To optimize computational performance and minimize latency, the global perception
system primarily operates in the pixel domain, intentionally avoiding real-time conversion
to real-world units (mm/cm). To facilitate external visual tracking and monitoring of the
robot workspace, a static overhead camera was mounted at an approximate height of 180cm,
positioned orthogonally to the robots’ plane of movement, providing a complete top-down
view of the area in which the robots would operate. To ensure measurement consistency
within the pixel domain, the workspace was limited to the central area of the camera’s field
of view, where lens distortion is minimal, but the total area corresponded to a rectangle of
140cm * 105cm. Consequently, critical metrics such as proximity and alignment thresholds are
defined directly in image coordinates. Although this approach streamlines the framework’s
architecture, it necessitates empirical validation to ensure that the defined pixel thresholds
correspond reliably to the physical distances required for successful robot manipulation. This
Logitech camera used was capable of capturing video at a frame rate of 30 frames per second,
with an max image resolution of 720x480m. The structure on which the camera was fixed
placed the camera at the center of the rectangle lenght-wise and 17cm width-wise, and directly
facing downwards. The device was connected via USB-A to the central control unit, which in
this case was a personal laptop computer serving as the main processing and coordination
node of the system.
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3.4.2 Communication

Information/Files Transfer

Communication with the robots involved two main aspects: first, the transfer of program
files to the robots, including the executables that would run onboard; and second, the exchange
of messages during program execution.

For file transfer and remote access, several options exist—such as Telnet, rsh, or more
modern alternatives like Mosh and VPN-based access—but SSH quickly stood out due to its
simplicity and robustness. Connecting only requires the robot’s IP address and user account,
using a command like: ssh user@ip

For added convenience, SSH keys can be configured, allowing secure, passwordless access.
This ease of use, combined with strong encryption, made SSH the natural choice for program
deployment.

For message exchange between robots and the central controller, the choice was between
TCP/IP and UDP, the two most common transport-layer protocols. TCP was selected as
the default because of its reliability: it guarantees ordered delivery and prevents packet loss,
both critical to avoid desynchronization or collisions between robots. UDP, while faster
and lower-latency, was less suitable since occasional lost packets could severely compromise
coordinated behavior.

Network Configuration

Initially, communication was carried out over a wired LAN/Ethernet connection, which
ensured low latency and reliable data transfer. However, this tethered setup restricted robot
mobility and was impractical for natural collaborative movement. To overcome this limitation,
the system was later adapted to a wireless configuration, using a smartphone hotspot to create
a local Wi-Fi network for both the laptop and the robots.

This shift to wireless networking provided significant benefits: it freed the robots from
physical constraints, simplified multi-robot communication (given the central controller’s
single Ethernet port), and offered straightforward setup and reliable performance in local
conditions. The use of a personal smartphone hotspot was particularly advantageous compared
to institutional networks such as Eduroam, which often involve complex authentication
procedures and restricted access policies.

To connect to the robot via Wireless Internet, one may use the command line just like if
one was connecting any computer with Ubuntu. However, simply connecting a monitor and a
keyboard to the robot and using the desktop interface is also available, and a lot easier, so
this was the chosen approach.

3.5 Humanoid Robots

When studying collaboration in robotics, small humanoid robots present both advantages
and limitations. On the positive side, their compact size, relatively low cost, and built-in
sensing and actuation capabilities make them accessible research platforms that allow for rapid
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Figure 3.2: Image depicting the sensors available on both the NAO and Darwin-OP

prototyping and experimentation in safe environments. Their anthropomorphic design also
enables realistic studies of human-like motion, perception, and interaction within multi-robot
teams. However, their reduced power, payload capacity, and sensor resolution compared to
larger platforms impose constraints on task complexity and scalability. Additionally, their
limited stability and simplified mechanics can make precise coordination or manipulation
more challenging, meaning results must often be extrapolated with care when transferring to
full-scale systems.

Initially, the robotic platforms employed in this thesis were a Darwin-OP humanoid
robot, selected for its compact form factor, onboard processing capabilities, and open-source
software support; and a NAO, chosen for its wide adoption in research, robust motion libraries,
integrated sensors, and user-friendly programming environment, which made it another
attractive platform for initial development and testing. 3.2

3.5.1 NAO Robot

NAO is a widely used humanoid robot developed by SoftBank Robotics (formerly Alde-
baran Robotics), designed for education, research, and human-robot interaction. Standing
approximately 58 cm tall and weighing around 5.4 kg, NAO is equipped with 25 degrees
of freedom, enabling a wide range of human-like motions including walking, gesturing, and
sitting.

NAO features a rich suite of sensors, including stereo cameras, sonar and infrared sensors,
inertial measurement units, and force-sensitive resistors in its feet. Its onboard processing
is handled by an embedded Intel Atom processor, and it runs NAOqi, a proprietary op-
erating system that supports Python, C++, and Choregraphe (a graphical programming
interface). These features make NAO especially well-suited for tasks involving speech recogni-
tion, computer vision, object tracking, and coordinated motion. In addition, NAO integrates
microphones, speakers, and expressive LEDs, which expand its capabilities for multimodal
interaction and communication. Networking options such as Wi-Fi and Ethernet provide
reliable connectivity, making it practical for multi-robot experiments and interaction with
external controllers.

Thanks to its modular software architecture, wide adoption in the research community,
and robust hardware platform, NAO has become a standard in academic and research
environments for studies in robotics, artificial intelligence, and human-robot interaction.
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Despite its versatility, certain limitations—such as limited payload capacity, relatively slow
locomotion, and a more closed hardware design compared to open-source platforms—must be
considered when selecting it for physically demanding or precision-critical tasks.

In the initial stages of this thesis, NAO was explored as a candidate platform for imple-
menting cooperative multi-robot tasks. Its user-friendly programming interfaces (including
support for Python and the Choregraphe visual environment), together with its integrated
vision and communication capabilities, made it a convenient choice for early development and
testing.

3.5.2 Darwin-OP

The Darwin-OP (Dynamic Anthropomorphic Robot with Intelligence – Open Platform) is
a compact, fully programmable humanoid robot developed by ROBOTIS in collaboration with
Virginia Tech and Purdue University, with support from the National Science Foundation
(NSF). Designed to serve as an open research platform in the fields of humanoid locomotion,
computer vision, and multi-agent robotics, Darwin-OP has been widely adopted in academia
due to its accessibility, modifiability, and cost-effectiveness. And in this project, we used the
first version of it.

This robot stands approximately 45 cm tall, weighs around 2.9 kg, and is equipped with
20 degrees of freedom actuated by Dynamixel MX-28 servos, offering precise position control
and torque feedback. Internally, the first-generation Darwin-OP features an Intel Atom Z530
processor, 1 GB of RAM, and a modest onboard SSD, running a Linux-based operating system
(commonly Ubuntu 9.10 or later).

One of the key advantages of Darwin-OP lies in its open-source hardware , in the form of
circuit diagrams and CAD files; and software architecture, which provides researchers with
low-level access to motor control, sensor data, and vision processing. Development is typically
done in C++, with Python support available, and the system is highly customizable through
its open SDK.

However, the hardware limitations of the original Darwin-OP model,particularly the
constrained processor and memory,make it unsuitable for running the full Robot Operating
System (ROS) in most use cases. While minimal ROS configurations have been attempted in
research contexts, performance issues such as latency, dropped frames, and instability during
locomotion often arise. As such, all the ROS work was done in the central controller, which
in turn used communication protocols and Darwin-OP SDK to control the robot.

Throughout this project, Darwin-OP proved to be a reliable and responsive platform,
especially for tasks requiring direct control and vision-based coordination. Its mechanical
robustness, lightweight design, and ease of hardware access made it well-suited for the
cooperative robotic tasks explored in this research.

The robot’s center of mass is strategically located near the pelvic region, which is considered
optimal for achieving stable bipedal locomotion. This central positioning enhances the robot’s
ability to maintain balance and supports a more efficient distribution of inertia during dynamic
gait cycles, contributing to smoother and more human-like walking behavior.
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Figure 3.3: Possible grippers for the Darwin-OP hand

Furthermore, Darwin-OP features a modular, network-based architecture, which allows for
flexible hardware customization. Each actuator operates as an independent module on a shared
communication bus, making it straightforward to modify or replace specific components, such
as the end-effectors or hand grips 3.3. This modularity is especially beneficial in experimental
settings, where different tasks may require tailored mechanical configurations or sensor
attachments.

In addition, the robot’s hollow structural frames contribute to both reduced overall weight
and increased internal accessibility. This design choice not only makes the robot lighter and
more agile, but also provides room for the integration of additional sensors or wiring, should
the user require extended functionality. Moreover, the open internal design significantly
facilitates routine maintenance and hardware inspection, which is particularly valuable in
long-term experimental or developmental environments.

3.6 Simulation

To minimize mechanical wear on the physical robots and to ensure continuous development
even outside the LAR (Laboratório de Automação e Robótica), simulation played a crucial
role throughout this project.

In the initial stages, development began with the NAO robot, for which Aldebaran
provides a dedicated simulation and programming tool called Choregraphe. This application
was specifically designed for NAO and Pepper robots, offering an intuitive visual interface
that includes a wide array of built-in action blocks known as "macros". These macros range
from basic tasks—such as speech synthesis, listening, sensing movement, and manipulating
joints—to more complex, compound behaviors like standing up, walking, or reacting to visual
cues.

One of Choregraphe’s key advantages lies in its seamless integration with the physical NAO
robot. By simply connecting the robot to a computer using an Ethernet cable, developers can
transfer and execute behavior sequences in real-time on the actual robot. This feature made
it easy to evaluate NAO’s functionality and identify hardware or software limitations early in
the project.

However, Choregraphe is exclusively tailored for Aldebaran’s platforms and does not offer
direct support for the Darwin-OP. As the focus of the project shifted toward the Darwin-OP
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robot, we began evaluating simulation tools that could support this hardware platform more
effectively.

One such candidate was Gazebo, a widely used physics-based simulator known for its
high-fidelity environments and tight integration with the Robot Operating System (ROS).
Gazebo initially seemed promising due to prior experience and its extensive feature set.
However, it proved to be highly resource-intensive and difficult to configure, especially on
machines with limited processing power. Additionally, while Gazebo supports the NAO robot,
accessing the necessary simulation libraries was not straightforward. Another major drawback
was that ROS-based control code used within Gazebo could not be directly deployed to the
Darwin-OP. This is because Darwin-OP’s onboard memory is insufficient to run a full ROS
environment, limiting the portability of code between simulation and reality.

Ultimately, the simulator selected for the majority of the project was Webots, an open-
source, cross-platform robotics simulator developed by Cyberbotics. Webots offers native
support for the Darwin-OP, complete with a ready-to-use 3D model and example controllers.
Aldebaran has also provided an official NAO model for Webots, making it a versatile tool for
multi-platform projects.

Webots was significantly lighter than Gazebo, allowing for smoother performance and
easier iteration. Most importantly, code written and tested in Webots for the Darwin-OP
could be cross-compiled and deployed directly to the robot with minimal adjustments. This
feature offered a much faster development cycle and reduced discrepancies between simulated
and real-world behavior.

3.6.1 Simulators Use - Choregraphe

Using Choregraphe to Interact with NAO

Once the NAO robot is physically connected to a computer via an Ethernet cable,
launching Choregraphe provides an intuitive and interactive environment for robot control
and development.To initiate the connection, the user simply clicks the “Connect” icon in
the toolbar and selects the desired robot from the list of available devices. From there, the
connection can be seamlessly transitioned to a wireless network, enabling untethered mobility
for the robot during operation.

Alternatively, developers may choose to connect to a virtual robot,ideal for early,stage
development and testing without physical hardware.

Upon successful connection, Choregraphe provides a comprehensive overview of the robot’s
current state. A 3D representation of the robot mirrors its posture in real-time, and the
camera feed from the robot’s onboard sensors is displayed within the interface. Individual
joints can be manipulated directly through the GUI, allowing users to explore the robot’s
range of motion and physical condition,all without writing a single line of code. These features
are accessible through intuitive control panels on the right-hand side of the application (insert
image).

For more advanced behaviors, Choregraphe offers a visual, block-based programming
environment. This drag-and-drop system enables the creation of intricate sequences using
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predefined blocks (called “boxes”) that cover a broad range of functionality:
• Basic Logic Blocks: Include fundamental programming elements such as conditionals,

loops, and timers.
• Communication Blocks: Allow NAO to send and receive emails, transmit infrared signals,

or manage its connectivity with Choregraphe and the internet.
• Audio Blocks: Enable speech synthesis, voice recognition, and the playback of pre-

recorded sounds or phrases.
• Vision Blocks: Provide tools for facial and object recognition, as well as image capture

and processing.
• Sensing Blocks: Offer access to NAO’s array of sensors, including temperature sensors,

foot bumpers, fall detection, hand touch sensors, and posture monitoring.
• System Blocks: Allow users to retrieve system information such as the robot’s name,

date/time, and log files.
• LED Control Blocks: Facilitate control of the robot’s LED indicators, including effects

like blinking or color changes.
• Motion Blocks: Arguably the most powerful set, these allow for complex motion sequences

like walking, dancing, or full-body coordination. Fine motor control is also possible
through these blocks, making it easy to choreograph sophisticated behaviors.

For users who require deeper customization or wish to go beyond the predefined capabilities,
Choregraphe allows inspection and modification of the Python code behind each block.
Developers can copy this code into a template Python box, where they are free to extend the
behavior or integrate external logic using standard Python programming practices.

This hybrid visual-code interface makes Choregraphe a remarkably powerful tool,not only
for beginners exploring robot control for the first time but also for experienced developers
building complex applications for the NAO platform.

In the following figure we can see what a normal use of Choregraphe may look like. In this
specific image, we have loaded a program that was used to test the joints of the robot.3.4
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Figure 3.4: Normal Interface when using Choregraphe

3.6.2 Simulators Use - Webots

Webots provides a powerful and user-friendly environment for simulating robotic behavior,
including full support for the Darwin-OP robot. To begin working with Darwin-OP in Webots,
the most straightforward approach is to open one of the pre-existing example worlds that
come bundled with the simulator. These example scenarios often correspond directly to the
built-in demonstration programs provided with the real robot itself—such as basic walking,
soccer, or object tracking,making the learning curve smoother if you’re already familiar with
the real hardware.

This direct equivalence allows users to prototype and validate behaviors in simulation
that can later be deployed onto the actual robot with minimal adjustments. Moreover,
Webots supports cross-compilation, which means code written and tested in simulation can
be compiled and transferred directly to the robot to be run natively.

Exploring the Simulation Environment

Once an example world is loaded,such as the soccer demo world,you will see several nodes
within the scene tree, each representing a component of the simulation. Among these, two
nodes are particularly essential:

• WorldInfo: This node defines the fundamental parameters of the simulation environment.
It includes values such as the physics engine settings, random seed (used for stochastic
behaviors), gravity, time step granularity, and the coordinate system. Adjusting these
allows for fine-tuning simulation realism or replicating specific conditions.

• Viewpoint: As the name suggests, this node controls the perspective from which the
simulation is viewed. You can configure camera angles, zoom level, or even script
dynamic camera behavior for better analysis during complex behaviors.
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Other nodes are grouped and color-coded for ease of navigation and generally represent
PROTO objects. These can include robots, static or dynamic obstacles, visual backgrounds,
and other elements of the simulated environment. Webots’ modular design allows users to
modify these nodes or create new ones entirely, making it easy to tailor the simulation to
specific experimental setups.

Writing and Deploying Code

Development can begin in two ways:
• Creating a new project, where you define a custom world and your own C++ (or Python,

Java, etc.) controller files; or
• Modifying an example project, in which case Webots will prompt you to either overwrite

the default files or save your modifications as a new, independent project directory.
The core logic typically resides in a file such as main.cpp, which can interact directly with

the simulated robot’s sensors, motors, and actuators through the Webots API. The simulator
also provides access to advanced utilities like kinematic solvers, camera feeds, and physics
interactions, allowing detailed and accurate development.

Cross-Compiling for the Real Robot

To deploy code developed in Webots to the actual Darwin-OP robot, cross-compilation is
required. This process allows the source code written in a host system (typically x86_64) to be
compiled into executable binaries compatible with the Darwin-OP’s ARM-based architecture.

Here is a summarized procedure for this workflow:
• Obtain the Cross-Compilation Toolkit - Download the Darwin-OP cross-compilation

package from Robotis GitHub repository or follow the link provided in the official
documentation.

• Transfer to the Robot - Copy the toolkit to the robot under the /darwin directory via
scp, USB, or any file transfer method.

• Build the Sources - After compiling the controller code on your local system, structure
the directory to mirror that used in the simulator. Then transfer your source files to the
robot, navigate to the proper directory, and compile directly on the robot using make.

• Reference Guide - A comprehensive and updated tutorial for this process is
available at: https://emanual.robotis.com/docs/en/platform/op/simulation/

#transferring-the-sources

This process allows seamless transition from simulation to real-world testing, accelerating
development while preserving hardware longevity by minimizing unnecessary wear and tear
during prototyping.

In the figure, we can see a world with a Darwin-OP robot in it. It encompasses a fase of
the project where the simulator was used to test out motions for the robot.3.5
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Figure 3.5: Normal Interface when using Webots

3.7 Conclusions

However, during practical development, several critical limitations emerged when using
the NAO robot.

One of the most impactful challenges was the difficulty in accessing and installing official
software packages provided by Aldebaran. Due to the age of the specific NAO unit available for
this work, an older-generation model, many of the required SDKs and development tools (such
as naoqi-sdk, python-naoqi, and ALMotion/ALVideoDevice modules) were either deprecated,
unavailable through official channels, or incompatible with current operating systems and
Python versions. This significantly hindered the ability to maintain or extend the robot’s
functionality within a modern development environment.

Compounding this issue were hardware instabilities, more notably:
• it had eletro-mechanical problems with the right shoulder motor, which did not move at

all;
• it could also not walk, as when we run the available macros to do so, he would turn off

after barely flexing his knees, probably because of not getting enough eletrical corrent
from the charger.

Due to all these motives, mainly the inability to walk, as well as some eventual dificulties
with simulating both robots, the NAO robot was discarded from the project, and instead it was
used 2 Darwin-OP. Nonetheless, the experience gained from working with NAO contributed
to the broader understanding of humanoid robot interfaces, and helped inform the selection
and configuration of the tools used in the final implementation.

As the NAO was eventually phased out and the project fully transitioned to using two
Darwin-OP robots, the advantages of Webots became even more prominent, providing reliable
and scalable simulation support for coordinated multi-robot tasks.
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CHAPTER 4
Vision Framework

In collaborative robotic tasks, perception and motion must operate in close synergy to achieve
reliable and coordinated action. This is especially critical for humanoid robots, where even
small errors in perception can cascade into instability, failed manipulation, or loss of balance.
In this chapter, we address the first of these two essential components: vision, leveraging both
the onboard cameras of the robots and an external camera.

4.1 Initial Problem

The goal of this stage is to provide reliable perception of both the robots and the object
using visual information. This involves not only detecting and identifying key elements in the
scene but also estimating their orientation and relative positions. At this point, the focus is
on perception rather than manipulation, ensuring that the robots have the spatial awareness
needed for subsequent control and coordination tasks.

Key challenges addressed in this section include:
• Object Detection in Complex Environments: The object (an aluminum bar) presents

difficulties due to reflections and similarities in color with the robots and floor. Robust
detection requires the use of external and onboard vision, supported by artificial markers
to improve reliability.

• Robot Orientation Estimation: Unlike simple detection, the robots’ orientation must
also be inferred. This is achieved through visual markers (e.g., strips or T-shaped
patterns), which provide stable features to extract heading direction even under variable
lighting.

• Fusion of External and Onboard Cameras: The external camera provides a global view
of the scene, while the robots’ onboard cameras deliver local, more detailed perspectives.
Combining these sources ensures more robustness against occlusions and improves
positional accuracy.

This section therefore focuses on the vision algorithms and filtering techniques used to extract
accurate and stable positional data, forming the foundation for motion planning and control.

25



4.2 Framework

The vision framework is divided into two layers: code running on the central controller
and complementary routines running directly on the Darwin-OP robots. This division ensures
that both global and local perspectives are combined to provide reliable perception.

On the central controller, two main ROS packages form the backbone of the vision system:
• ExternalCamera: This package interfaces with an external overhead camera, continuously

capturing images of the environment and publishing them to a ROS topic. It provides a
global perspective, covering both robots and the object simultaneously.

• ProcessImage: For each robot in operation, a dedicated ProcessImage node is launched.
This package processes the external camera feed, identifies the robot and the target
object, and extracts key spatial information such as position and orientation. This
information forms the basis for higher-level decisions, such as planning trajectories or
aligning robots with the object, which will later be executed by the control framework.

In this configuration, the external camera provides the raw information that will be needed for
multi-robot coordination, while the ProcessImage nodes refine said information into actionable
data tailored to each individual robot. Together, they establish the perceptual foundation
required for stable, collision-free approaches to the object.

On the Darwin-OP robots, vision operates in a more focused and situational manner. Once
a robot has reached close range and is roughly aligned with the target, the central controller
transmits the color to be tracked, and the robot switches into a local detection mode. In
this mode, visual processing relies on the built-in ColorFinder module in combination with
a slightly adapted version of the BallTracker module. Using these tools, the robot isolates
the object in its field of view and determines its relative position with greater precision than
the external camera can offer at short distances. From this perception, the robot derives the
fine-grained motion adjustments needed and forwards them directly to its onboard control
module, bypassing the central controller and minimizing communication delays.

In this setup, the onboard camera contributes the close-range accuracy and responsiveness
that global vision alone cannot provide. By leveraging targeted vision modules, the robot
maintains stable alignment and approach during the most delicate phase of interaction.

This dual-layered setup ensures robustness: the external camera offers global spatial
awareness and prevents inter-robot collisions, while onboard vision provides precise, real-time
adjustments during the final approach. Importantly, the central controller retains the ability to
override or deactivate local autonomy, maintaining consistency within the overall coordination
framework.

4.3 External Camera

In our framework, the external camera processing is structured around two ROS packages:
ExternalCamera, responsible for acquiring and publishing the raw images, and ProcessImage,
which interprets this data to extract meaningful information about the robots and the object.
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The ExternalCamera node is responsible for interfacing with the overhead camera, con-
figuring essential parameters such as frame rate, resolution, and image format, and then
publishing the resulting image stream to a designated ROS topic. In this work, a single
external camera was sufficient to cover the entire workspace, and therefore only one topic
was required. Nevertheless, the design is flexible: multiple cameras could be integrated, each
publishing to its own topic, thereby allowing independent or complementary visual streams to
be associated with different robots or regions of the environment.

The ProcessImage node is responsible for interpreting the visual data published by the
ExternalCamera. For each robot in the system, a dedicated ProcessImage instance is launched,
allowing the perception pipeline to be tailored individually. The configuration for each robot
is defined through a specific config file, which includes the color of the robot’s "hat" and the
target color, as well as additional parameters such as dilation/erosion iterations and other
image-processing settings. This file can also specify fixed waypoints for the robot to approach
and contains the corresponding robot’s IP address on the network.

Using this configuration, the node identifies the robot and its designated object in the
scene, estimates their relative orientation and distance, and formats the results into a concise
output:

(IP) (Distance:Angle) (Pose) (Color)
where IP is the robot’s network address, Angle represents the angular offset between

the robot’s heading and the object (0° meaning perfect alignment), Distance indicates the
separation in pixels, Pose are the coordinates and orientation of the robot, and Color are the
parameters that describe the target color. These structured outputs are then published to the
appropriate topic, enabling the control framework to use them directly for trajectory planning
and alignment.

By separating raw image acquisition from robot-specific interpretation, ProcessImage
provides a flexible and modular bridge between global perception and targeted robot control.

4.3.1 Baseline Method

The first step in estimating the angle and distance between a robot and the object is to
reliably identify both in the environment. Our initial approach for detection is intentionally
simple and robust: the use of color filtering to isolate the relevant elements.

To achieve this, the image from the external camera is first converted from the RGB
color space to HSV, which separates chromatic information (Hue) from intensity (Value) and
saturation. This representation allows for more flexible filtering, since the Hue can be tuned
to select the desired color, while adjustments to Value and Saturation help compensate for
variations in illumination, reflections, and shadows.

Once the filter is applied, the pixels corresponding to the target color are grouped, and their
centroid is computed to approximate the object’s or robot’s position in the scene. To reduce
noise and improve the robustness of detection, morphological operations such as dilation and
erosion are applied, producing cleaner, more coherent clusters.
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Because the external camera is mounted overhead and oriented nearly perpendicular to
the floor, the centroid of each cluster provides a good approximation of the object’s true
position on the ground plane. This simple pipeline offers a practical foundation for object
detection, upon which more advanced methods can later be built.

While this baseline method already provides a reliable way to localize robots and objects
on the ground, it is not without limitations. Variations in lighting, reflections from surfaces,
or color similarities between different elements of the environment can still introduce errors.
For this reason, several refinements and complementary strategies were later explored, which
are presented in the following subsections.

4.3.2 Increase Visibility

One of the first challenges in visual detection was the difficulty of distinguishing the robots
and the object from the environment. Both the Darwin-OP and the aluminum bar shared a
metallic grey appearance, often reflecting light in ways that produced glare and blended them
with the similarly colored floor. These conditions made color-based segmentation unreliable
and led to inconsistent detection, particularly under varying illumination.

To illustrate this issue, we conducted an experiment using the baseline method. In this
setup, the robot’s orientation was approximated as the perpendicular to the width of the
smallest bounding rectangle enclosing the largest detected centroid from the color filter. For
the moment, we set aside the ambiguity of the rectangle’s front–back symmetry (the "90°
problem"), assuming the robot would be correctly oriented. In the figure 4.1, we can see one
attempt to correctly obtain the distance and angle difference from the robot to the object,
and in the plot 4.2, we can see that the results were unsatisfactory: the estimated angles
lacked precision, varied considerably, and were not consistent across frames.

To address this limitation, we adopted a simple but effective visual enhancement strategy.
High-contrast red paper strips were attached to each end of the aluminum bar. This modifica-
tion made the bar stand out clearly in the camera feed, while the placement of two strips
allowed the system to detect not only the bar’s position more easily, but also its orientation
at all times, as the two ends could now be independently identified.

A similar approach was used for the robots. To estimate their pose, colored paper markers
were placed on the head, visible from the overhead camera. This allowed us to determine not
only the robot’s location but also its facing direction, information that is crucial for trajectory
planning and coordination.

These minimal, low-cost visual markers provided a reliable baseline for object and robot
localization during early development. They significantly improved detection stability without
the need for complex feature extraction or sensor fusion techniques. For simplicity, and
because at this stage only a single robot was used, we initially employed a red paper circle at
the center of the bar rather than strips at the edges. Later refinements extended this idea by
placing markers at both ends, enabling more robust orientation estimation.

In the figures 4.4 we can see how the improvements would look to the naked eye, and in
4.4 we can see the result of simple color filtering applied to the more vibrant colors.
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Figure 4.1: The result of the baseline method: Simply applying a color filter for the different shades
of grey to differentiate between the robot, the object and the floor

Figure 4.2: Variation of the angle between the robot and the object read in a interval of 60 seconds
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Figure 4.3: Colors applied to the object and the robot for easier detection

(a) Robot’s Blue Marker (b) Object’s Red Marker

Figure 4.4: Result of color filtering red and blue, obtaining the robot and object markers

30



4.3.3 Get Robot’s Pose

Using a simple rectangular strip or elongated polygon to estimate the robot’s orientation
poses a significant limitation: such markers only allow us to determine directionality within a
0–180° range, lacking the ability to distinguish between forward and backward orientations.

To overcome this, we opted for a more descriptive visual marker:an oriented polygon in
the shape of an isosceles triangle, which was placed on top of the robot’s head. This triangle
provides a clear directional cue, enabling us to determine not only the robot’s heading but
also its absolute orientation from 0° to 360°. Since the robot typically maintains its head
aligned with its body’s forward direction, this triangle serves as a reliable indicator of the
robot’s global pose.

This approach, however, is not without challenges. The robot’s head is not a uniform
surface, and during locomotion, it changes its height, inclination, and sometimes even align-
ment slightly. Moreover, non-uniform lighting conditions or partial occlusions can cause
inconsistencies in how the triangle appears in the captured image. In such cases, the system
may incorrectly interpret the marker, leading to abrupt orientation errors—for example,
flipping from an angle β to β + 180°.

To reduce these inconsistencies, we implemented a temporal smoothing strategy. The
system tracks recent orientation values within a small time window and detects outliers by
comparing the current estimate with the recent history. If an angle measurement differs
significantly from the last few values, it is flagged as potentially inaccurate and temporarily
discarded until further consistent measurements confirm a new trend. This stabilization
mechanism helps avoid erratic jumps in orientation caused by momentary occlusions or
lighting artifacts, providing smoother and more reliable estimates.

To calculate the orientation of the triangle (and thus the robot), we identify two key
geometric points on the triangle:

• Point A is the center of the minimum-area oriented bounding rectangle that fully encloses
the triangle. This gives a good approximation of the triangle’s geometric center and is
usually close to its centroid, especially for symmetric shapes like the isosceles triangle.

• Point B is the center of mass (COM) of the triangle, calculated by treating each pixel
within the triangle as having equal mass. Because of the triangle’s shape (with the
base wider than the height), the COM is typically located closer to the base than the
geometric center.

By connecting Point B to Point A, we obtain a vector that aligns with the triangle’s
principal direction. While this vector provides a consistent estimate of orientation, we found
that the bounding rectangle itself offered greater stability for determining the main axis,
even tho it was not as precise. The AB vector was then used to disambiguate directionality,
indicating which end of the rectangle corresponded to the robot’s forward heading. In the
figure 4.5 we can see a full representation of the method used. In this case, the corresponding
rectangle and the AB line (pink) are perfectly aligned.

This method, combining simple geometric reasoning with temporal smoothing, proved
to be both efficient and effective. It significantly improved the consistency and precision of
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Figure 4.5: Representation of how the angle between the robot (with the marker on it’s head), and
the object is calculated

orientation estimation while keeping computational requirements modest.
As shown in the plot 4.6, although some fluctuations remain, the measured values are

notably more stable and remain close to one another.
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Figure 4.6: Plot of the values of the angle and the robot calculated in 60 seconds, using the adition
of the blue triangle on top of the robot’s head

4.3.4 Changing the polygon

While the isosceles triangle provided a theoretically sound and geometrically rich solution
for orientation estimation, in practice it introduced additional complexities. Because it relied
on precise shape recognition, the triangle marker proved sensitive to variations in lighting,
partial occlusion, and perspective distortion. Even with temporal smoothing, the shape was
sometimes fragmented or misidentified, particularly when the robot was in motion.

Although the method using the angle of the bounding box was semi-consistent, often
switching only between two nearby values, these jumps could occasionally result in large
orientation errors that effectively reset the robot’s perceived heading. This instability is
illustrated in the figure 4.7 below: the triangle appears in nearly identical positions, yet
slight differences in illumination or head inclination cause the system to compute completely
different orientation angles.

(a) Correct Read (b) Wrong Read

Figure 4.7: Triangle can help correctly read the angle between the robot and the object, but can
also lead to an incorrect reading.

To improve robustness, we replaced the triangle with a simpler and more reliable visual
marker: a pair of colored strips arranged in a T-shape. This configuration proved far easier to
detect under varying conditions. The orthogonal lines of the T provided clear visual anchors,
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simplifying both segmentation and orientation calculation.
In this setup, the stem of the T indicates the backward direction of the robot, while the

top bar confirms the marker’s orientation. Because the T is asymmetric, it eliminates the 180°
ambiguity that plagued symmetric shapes, while still maintaining computational simplicity.

This modification greatly increased tolerance to environmental noise, shadows, and small
changes in the robot’s position or head angle. As a result, orientation estimates became
significantly more stable and accurate, an especially critical improvement when robots operated
near each other and the object.

The shift from the triangle to the T-marker illustrates a key trade-off: sacrificing some
geometric richness in favor of a solution that is simpler, more robust, and better suited
to real-world conditions. The following plot 4.8 demonstrates this improvement, showing
orientation values that remain nearly linear with minimal variation.

Figure 4.8: Plot of the values of the angle and the robot calculated in 60seconds

4.3.5 Create more contrast

The simple T-marker already provided a significant improvement in both consistency and
precision of orientation detection. However, in certain situations parts of the T would become
partially obstructed by the robot’s “ears,” or its visibility would be reduced due to reflections
caused by the circular metallic surface of the robot’s head where the strip was attached.

These issues sometimes produced orientation errors of approximately 90°, as the top bar of
the T remained visible while the stem was partially lost. In such cases, the bounding rectangle
enclosing the marker would align only with the bar, disregarding much of the stem, and the
computed orientation angle would fail.

In the figure 4.9 , we can observe an example of this effect.
To further increase precision and robustness, we designed a simple paper “hat” that could

be placed on the robot’s head. The hat featured a darker decagonal base, on top of which the
lighter T-marker was fixed. This configuration created higher contrast, reduced glare from
the metallic head surface, and ensured that the T was better aligned for detection in most
circumstances.
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(a) Correct Read (b) Wrong Read

Figure 4.9: T shape can help correctly read the angle between the robot and the object, but can also
lead to an incorrect reading.

While the smaller T that fit on the hat was occasionally subject to minor devia-
tions—typically within ±10° due to lighting effects, these were not significant. The increased
robustness and protection against large orientation errors outweighed this drawback, making
the hat-mounted T-marker our preferred and final solution.

In the figure 4.10, we can see the end result of this system.

Figure 4.10: The robot with the "hat"

The following plot 4.11 illustrates the resulting orientation measurements, highlighting
the improved consistency and the relatively small variations observed.
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Figure 4.11: Plot of the values of the angle and the robot calculated in 60seconds

4.4 Internal Camera

While the external overhead camera provides a broad, global view of the workspace,
its effectiveness decreases when a robot approaches the target object. At close distances,
occlusions and limited resolution make external vision less reliable for fine alignment. For this
reason, the Darwin-OP’s internal camera is employed as a complementary perception source,
enabling precise, local detection when the robot is near its goal.

This part of the framework was inspired by the BallFollowing/Football demo provided
by Robotis, which showcases the use of onboard vision for real-time object tracking. The
demo relies on two core modules—ColorFinder, which isolates pixels matching a predefined
color, and BallTracker, which estimates the position of the detected object in the image.
While the original implementation was designed for tracking a ball on the ground, our task
required adapting the method for detecting and approaching an elevated object. With these
modifications, the same lightweight and efficient approach could be reused, ensuring reliable
close-range tracking while keeping computational requirements minimal.

4.4.1 Baseline

The Football demo, developed by Robotis, provides a practical showcase of the Darwin-
OP’s onboard vision and locomotion capabilities. In brief, the demo enables the robot to
locate a ball, approach it, and ultimately execute a kick. With the exception of the kicking
action itself, this baseline behavior closely matches the requirements of our autonomous mode
and was therefore adopted as a foundation for our work.

At the start of the demo, the robot activates the ColorFinder module, which by default
searches for red pixels in the images captured by the onboard camera. If no target is detected,
the robot slowly pans its head from side to side in an attempt to bring the ball into view.
Should this also fail, the robot halts and waits.

Once the ball is detected, the robot adjusts its head to align the centroid of the detected
“red” region as closely as possible with the center of the camera’s image. This ensures that
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the object remains in view while providing a reference for motion control. The head pan angle
is interpreted as the horizontal offset of the ball, which dictates how much the robot should
rotate its body to face it directly. The head tilt angle provides a rough estimate of distance:
the lower the tilt required to see the ball, the closer it is to the robot’s feet.

Using these two cues, the robot approaches the ball, continuously correcting its trajectory
to keep the head pan near zero (object centered) and reducing the tilt as it gets closer. When
both angles indicate that the object is directly in front and near the robot, and the centroid
lies close to the center of the image (slightly below to account for the downward camera angle),
the system determines that the ball is within kicking range. The robot then checks the pan
value to decide which foot to use and executes the kick, after which it resumes searching for
the ball.

This process works reliably and illustrates the effectiveness of lightweight onboard vision.
More importantly, it demonstrates a control loop that is highly similar to the behavior desired
for our autonomous mode: continuous perception-action cycles that guide the robot toward
an object without requiring input from the external controller.

4.4.2 Adaptation for our case

When considering how to adapt the Football demo to our project, one advantage immedi-
ately stood out. In our framework, this autonomous mode is only activated when the robot
is already close to and roughly aligned with the target object. This greatly reduces the risk
of the robot failing to detect the object during the initial search, a major drawback of the
baseline demo. With visibility ensured, we could focus on adjusting the perception-to-action
loop for our task.

The first step was to evaluate whether the existing pan and tilt parameters, originally
tuned for a ball on the ground, were suitable for detecting and approaching the aluminum bar.

• Pan adjustment: In the demo, the head pan is sufficient to guide the robot into a position
where it can kick with either foot. In our case, however, grasping the bar requires both
arms to be engaged simultaneously. If the robot approaches at a slight angle, one arm
may miss the object entirely. To prevent this, we narrowed the acceptable pan range,
ensuring the robot is more strictly aligned before attempting a grasp.

• Tilt adjustment: The tilt values in the baseline demo assume the ball lies on the floor.
For an elevated object like the bar, this would result in the robot pushing the bar forward
instead of approaching it correctly, as the projection in the image would misrepresent
the distance. To account for this, we increased the minimum tilt angle considered
“close enough,” ensuring the robot only initiates the pickup when the object is at the
appropriate height and range.

Finally, the kicking motion of the original demo was replaced by a pick-up sequence,
specifically designed for lifting the bar. The details of how this motion was achieved will be
discussed in the Control section.

With these targeted modifications, the Football demo was successfully repurposed into an
effective autonomous mode for our project, capable of guiding the robot to reliably align with
and grasp the object.
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4.4.3 Integration into the Framework

Having made the necessary adaptations, we now have at our disposal a reliable Autonomous
Mode that functions effectively at close range, precisely where the external camera becomes
less reliable due to reduced accuracy or occlusions caused by the robot itself.

Nevertheless, this mode still suffers from limitations at longer distances, where it may fail
to correctly identify the object. This can occur either because of background interference
from similar colors or simply because the object lies outside the robot’s field of view. For this
reason, the transition to Autonomous Mode is not handled locally but instead triggered by the
central controller, which bases its decision on information obtained from the ExternalCamera.

Activation is conditioned by two factors:
• Proximity: the robot must be within a predefined distance threshold of the object;
• Alignment: the robot’s orientation relative to the object must fall within an acceptable

angular range.
When both conditions are satisfied, and the robot is not picking up/putting down the

object, the robot switches into Autonomous Mode. From this point onward, local vision
processing ensures fine-tuned adjustments of orientation and distance, enabling the robot to
prepare for stable manipulation of the object.

This hybrid approach leverages the complementary strengths of the two vision sources: the
global perspective of the external camera for long-range navigation and collision avoidance,
and the local precision of the onboard camera for short-range alignment and final approach.

4.4.4 Results and Observations

The use of this module proved to be highly effective.
In the following table 4.2, we can see that although the external module alone was usually

not enough to place the robot in an ideal position to pick up the object, it would place it
good enough to allow for the Autonomous Mode to precisely adjust as needed.

Table 4.1: Results of applying both the vision modules when the robot is in various positions. Each
entry corresponds to (d, θ), where d is the distance(pixels) and θ is the angle (degrees)

Beginning Before Autonomous Mode Before Picking up Object
(24798, 70º) (4721, 9º) (2255, -3º)
(25310, -71º) (4563, 10º) (1897, 0º)
(87986, -90º) (4890, 14º) (2015, 5º)
(87899, 90º) (4590, -7º) (1987,-1º)

(134356, 176º) (4988, 15º) (2119,12º)

Table 4.2: Distance and Resulting Angle when the system passed to Autonomous Mode, and when
decided it was close enough to pick up the object.

Although it occasionally exhibited minor overshooting, it consistently enabled the robot to
approach the object with far greater reliability. This significantly reduced the risk of colliding
with the object and causing it to fall, or stopping in a position unsuitable for initiating the
pick-up motion.
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In practice, the Autonomous Mode successfully addressed the main shortcoming of the
external camera setup: its lack of precision at close distances. This limitation arose both from
occlusion, where the robot’s own body partially blocked the object, and from the inherent
scale of pixel-based measurements, where small shifts in image coordinates correspond to
disproportionately large changes in physical distance.

By contrast, the local onboard vision offered the fine-grained accuracy necessary to carry
out the final alignment and approach. While it retained clear disadvantages in long-range
perception and in maintaining awareness of the broader environment, it complemented the
external camera perfectly by filling in this critical gap. Together, the two systems provided a
balanced and robust perception framework across both global and local scales.

4.5 Final Conclusions

With this two-module solution, we established a framework capable of extracting the
essential information from the environment to guide the robots reliably toward the target object.
The modular design not only ensures clarity in responsibilities, separating global perception
from local fine-tuning, but also provides a natural path for scalability. In principle, the
framework can accommodate additional external cameras for wider coverage, or be extended
to manage a larger number of robots with minimal adaptation. Despite retaining certain
limitations, most notably the reliance on color filters, which can fail when confronted with
background interference or changing illumination, and the persistent possibility of occlusions,
the system proved sufficiently robust and dependable for the scope of this project. In practice,
it consistently delivered the necessary perceptual accuracy to enable stable robot approaches
and laid a strong foundation for subsequent work in cooperative object manipulation. Looking
ahead, the framework could be further strengthened by reducing its reliance on handcrafted
color filters, for instance through the integration of depth cameras or learning-based detection
methods that are more resilient to environmental variability. Additionally, combining external
and onboard vision with proprioceptive data from the robots themselves would create a richer,
multi-modal perception system, ultimately enabling more reliable and adaptable collaboration
in increasingly complex scenarios.
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CHAPTER 5
Control Framework

Building upon the perception layer established through vision, the second fundamental com-
ponent of collaboration is control. Whereas vision determines what is happening in the
environment, control governs how the robots respond—translating spatial information into
coordinated, stable, and purposeful motion.

5.1 Initial Problem

The goal of this stage is to transform the perception provided by the vision system into
reliable robot motion. The robots must be capable of approaching the object individually,
maintaining balance, and avoiding interference with one another, to prepare for the cooperative
transport. This requires both macro-level coordination (high-level commands) and micro-level
precision (joint control and posture adjustment).

Key challenges addressed in this section include:
• Macro vs. Micro Control: High-level actions such as walking forward or rotating must

be combined with more fine-grained control of joints for tasks like aligning arms or
shifting posture. Balancing these layers of control is essential for smooth execution.

• Postural Stability: Any upper-body movement, such as raising the arms in preparation
for grasping, alters the center of mass. Ensuring stability requires synchronized control
between the torso, arms, and legs.

• Collision Avoidance Between Robots: As both robots approach the same object, their
paths must remain coordinated to prevent collisions or blocking each other’s approach.
The global perspective from the external camera supports this coordination.

• Action Synchronization Across Multiple Robots: Both robots must align the timing and
execution of their actions (e.g., walking pace, rotations, or initiating a lift) to ensure
smooth coordination and prevent mismatched behaviors.

This section presents the control strategies and communication mechanisms used to ensure
that each robot can move safely and accurately toward the object, preparing the ground for
cooperative manipulation in later stages.
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5.2 Framework

When discussing the control framework, a structure emerges that closely parallels the
vision system: it is composed of two primary components. The first runs on the central
controller, implemented through ROS packages, while the second executes directly on the
Darwin-OP robots themselves.

On the central controller, the ROS packages serve as the high-level decision-making
layer. They aggregate information from the external camera and status updates from each
robot, then plan actions at a macro scale. This includes tasks such as determining the
appropriate direction of movement, deciding when to initiate the Autonomous Mode, and
handling communication to transmit commands to the robots.

On the Darwin side, the control framework is organized into specialized modules for robot
control, walking, communication, and motion/joint actuation.

• The robot controller module acts as the central node, interpreting incoming commands
from the communication module and delegating them to the appropriate subsystems.

• The communication module, as the name implies, manages the exchange of data,
receiving high-level commands from the central controller while also reporting back
real-time information about the robot’s internal state.

• The walking module encapsulates locomotion, including forward steps, rotations, and
autonomous decisions based on feedback from the internal camera when Autonomous
Mode is active.

• Finally, the motion/joint control module executes predefined motions such as the
object pick-up sequence, and, when required, enables fine-grained joint adjustments as
instructed by the central controller. Although this last functionality was less frequently
used in our project, it remains an important capability of the framework.

This modular division between centralized planning and distributed low-level execution
ensures that high-level coordination is preserved across robots, while each individual robot
maintains the autonomy and precision needed for reliable action.

5.3 Central Controller

5.3.1 ControlDarwinNode

This ROS node serves as the interface between perception and action: it receives positional
data from the ProcessImage nodes and translates it into executable commands for the robots.
The information is published in the format <(IP) (Distance:Angle) (Pose) (Color)>, where
IP specifies the target robot, Distance represents the distance in pixels to the object, Angle
indicates the angular deviation relative to the robot’s forward orientation, Pose has the
coordinates and current orientation of the robot, and Color has the HSV parameters that
define the target color of the robot. Based on this input, the node determines the appropriate
command and transmits it to the corresponding robot over a TCP/IP connection.

In addition to automated commands derived from vision, this node also supports user-
specified commands. These can be published to a dedicated ROS topic in the format
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<IP Command>, where Command follows the structure of a standard robot command,
as described below. This feature provides flexibility for testing, debugging, and manually
overriding automated behavior when necessary.

Commands

The transmitted commands fall into two main categories: simple commands and complex
commands.

• Simple commands operate at a low level, directly adjusting the position of a single
joint or a symmetrical pair of joints. They are typically used for fine-tuning, such as
correcting posture, adjusting arm alignment, or carrying out precise calibration steps.

– Format: j:JointID:BothJoints:Increment
– j: indicates that the command refers to a joint action rather than a complex motion.
– JointID: identifies the joint to be moved.
– BothJoints: specifies whether the command should apply to only the selected joint

(1), to both symmetrical joints (2), or to a single joint in absolute mode (0).
– Value/Increment: defines either the incremental adjustment to apply, or the absolute

value for the joint position (in the BothJoints = 0 case).
• Complex commands coordinate multiple joints to perform higher-level motions, such as

walking, rotating, or executing the pick-up sequence.
– Format: MotionID:TimeToExecute
– MotionID: a single character that identifies the intended action (e.g., ’f’ for walking

forward, ’f’ for turning left, ’x’ for initiating the pick-up motion).
– TimeToExecute: the duration of the action in seconds. In practice, this value

is usually capped at 2 seconds to avoid error accumulation and ensure stable
execution.

By unifying vision-driven inputs with user-level overrides, this node provides a robust and
flexible control mechanism. It ensures that robots can respond both to autonomous perception
and to operator interventions, while maintaining a consistent communication structure across
the system.

Macro Control

After gathering information from the different ProcessImage nodes, this control node
determines the most appropriate action to send to each robot. Its primary priority is alignment:
the robot is first instructed to rotate until its orientation relative to the object falls within a
predefined threshold. This ensures that, once the robot is close enough, the object is already
within the field of view of its internal camera.

Only after achieving adequate alignment does the node issue forward-walking commands,
gradually reducing the distance to the target. If at any point the alignment drifts outside
the acceptable range, rotation commands are reissued to correct orientation before further
advancing.
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This cycle continues until the robot reaches a distance threshold from the object. At that
point, the node commands the robot to switch into Autonomous Mode, handing over fine-
grained control to onboard vision. As with all complex motions, activation of the Autonomous
Mode is constrained to a maximum of two seconds, providing regular opportunities for
macro-level corrections and preventing uncontrolled drift.

5.4 Darwin Control

Before addressing the control architecture and motion strategies, it is important to outline
the basic operational procedures of the Darwin-OP platform. This section provides a brief
overview of essential setup tasks, such as powering the robot, establishing connections, and
accessing its internal systems, to help future users quickly configure the platform and focus
on higher-level development rather than initial troubleshooting.

To operate the Darwin-OP robot, one can either connect it directly to a power adapter
or use a rechargeable lithium-polymer battery, which typically provides up to 30 minutes of
autonomous operation under standard loads. Swapping the battery is straightforward: with
the robot connected to the charger, the battery can be safely removed and replaced with a
charged one before disconnecting the power cable, ensuring uninterrupted readiness.

The LED indicator located on the robot’s forehead serves as a simple yet effective diagnostic
tool. By default, a green LED signifies that the robot is powered on and idle, while a yellow
LED indicates that an active process or user-defined program is running. Upon startup,
the robot automatically enters demo mode unless configured otherwise, and this is generally
accompanied by a yellow LED.

To power down the robot, the user may press the chest button for approximately 3 seconds
to initiate a graceful shutdown. In the case of a system lock-up or emergency, holding the
button for 7 seconds will trigger a forced shutdown. During either procedure, the forehead
LED will begin flashing green. Once it ceases blinking and remains off, it is safe to press the
power button again and disconnect the power source or remove the battery.

Because the Darwin-OP runs a full Linux operating system, it can function as a standalone
computer, and makes it a lot easir to transfer information with. Users may connect a monitor
via HDMI, a keyboard via USB, and directly interact with the system without needing a
remote terminal. This is especially useful when setting up Wi-Fi for the first time. Rather
than connecting via Ethernet, identifying the robot’s IP address using a network discovery
tool (e.g., Fing or Angry IP Scanner), and configuring Wi-Fi manually through SSH, the user
can instead access the GUI or terminal locally and configure networking settings with ease.

This direct access also proves handy for quick debugging or minor code adjustments. The
robot comes pre-installed with essential development tools, including the Vi text editor and
g++ compiler, enabling on-the-fly code editing and compilation directly on the device.

5.4.1 Key-Hardware Components of Darwin-OP

After configuring the basic connection and setup of the Darwin-OP, the next step involves
accessing its key hardware components, namely, the onboard camera and servo motors. These
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elements form the foundation of both perception and actuation in the system. The following
sections describe how to use the built-in API to interface with the robot’s camera to acquire
visual data, and present two distinct approaches for controlling its servos, each suited to
different levels of precision and autonomy.

Use Camera

To capture images using the Darwin-OP’s built-in camera, the following steps are typically
performed:

• Instantiate a LinuxCamera object – This class handles all operations related to image
acquisition. It provides access to image size, format, color channels, and internal buffers.

• Convert the raw RGB data to JPEG format – The Darwin-OP framework includes a
built-in function (jpeg_utils::compress_rgb_to_jpeg) to efficiently compress the image
into JPEG, which reduces the size for storage or transmission.

• Store or transmit the image – The resulting JPEG buffer can either be saved locally on
the robot or sent to an external controller (e.g., a laptop) using an SSH connection or
another communication protocol.

Control Joints Movement

To interact with the servos (i.e., Dynamixel motors), there are two main approaches: One
approach is to directly comunicate with them using the CM730 API, as the CM730 module
provides direct read/write access to the motor registers.

This method offers fine-grained control and communicates directly with the servo hardware,
allowing faster and more precise interaction when real-time feedback is important.

• To read a joint’s current position (from hardware), use: cm730->ReadWord(joint_id,
MX28::P_PRESENT_POSITION_L, value_ptr, 0);

• To write a target angle (goal position), use: cm730->WriteWord(joint_id,
MX28::P_GOAL_POSITION_L, value, 0);

• To change specific control parameters, such as the proportional gain (P-Gain), use:
cm730->WriteByte(joint_id, MX28::P_P_GAIN, 8, 0);

This other approach is to use the MotionManager/MotionModule modules that also come
built-in to more easily integrate with the robot’s motion modules and ensures synchronization
across subsystems (e.g., walking, head tracking). However, it does not provide real-time
feedback from the actual servo hardware.

• Create and initialize a Motion Manager instance with the preferred configurations;
• Create and initialize a MotionModule instance, and add it to MotionManager, like for

example the Walking/Head module, or a custom one created by us.
• We acess the m_Joint parameter of the instance, and call the SetValue(joint_id, value)

function to set a desired joint angle.
• Call Process() on the MotionManager instance to apply the changes to the servos.
• Use GetValue(joint_id) the same way we used SetValue(...) to retrieve the most recently

commanded value for that joint.
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Comparison

While both approaches allow for joint control, they serve different purposes:

• MotionManager is ideal for high-level, coordinated control. It tracks commanded
positions internally but does not reflect the physical motor position, which may differ
due to mechanical resistance or power issues.

• CM730 allows direct access to the Dynamixel registers, enabling real-time feedback and
low-level control, independent of the high-level motion system.

This makes CM730 particularly useful for diagnostics, sensor fusion, and precise feedback
loops, while MotionManager is better suited for structured motion execution and integration
with walking or gesture frameworks. In the end, in our project we opted to use mostly CM730.

5.4.2 Improve Locomotion

One recurring challenge during locomotion arose from the robot’s default foot design. The
Darwin-OP’s soles are made of smooth metal plates, which, although mechanically robust,
provide little traction on standard laboratory flooring. As a result, the robot frequently
experienced minor slippage during normal walking and much more noticeable sliding during
in-place rotations. This effect was exacerbated on surfaces that were not perfectly level, often
creating asymmetries in rotational performance depending on the turning direction.

Such slippage was particularly problematic for the control framework, as it introduced
inconsistencies when attempting to compute reliable average angular and linear velocities. The
resulting displacements varied significantly across repetitions, making it difficult to predict
motion outcomes with precision.

To quantify the extent of this problem, a series of experiments was conducted. The robot
was instructed to rotate for 2 seconds in both directions, and the resulting translations and
rotations were measured and averaged. The procedure was then repeated with 4-second
rotation intervals. A similar approach was applied to forward walking motions, testing both
2-second and 4-second durations.

These experiments not only allowed us to evaluate the repeatability of the robot’s move-
ments, but also provided average velocity estimates. Such measurements were later used to
parameterize higher-level control strategies, enabling the robot to perform longer motions
more reliably.

Table 5.1: Results of motion experiments without any soles. Each entry corresponds to (x, y, θ),
where x and y are translations (cm) and θ is rotation (degrees).

Command Trial 1 Trial 2 Trial 3
(Rotate right 4s) (-6, 8,-30º) (-8, 11, -30º) (-11, 5, -20º)
(Rotate right 2s) (-2, 3, -30º) (-8, 11, 20) (-6, 7, -30º)
(Rotate left 4s) (0, -9,220º) (0, -6,270º) (3, -7,220º)
(Rotate left 2s) (1, 3,70º) (3, 9,120º) (5, 8,90º)
(Forward 4s) (11, 40,25º) (13, 44,5º) (21, 36,50º)
(Forward 2s) (1, 28,40º) (4, 27,45º) (0, 30, 35º)
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The results reveal clear asymmetries and inconsistencies in the Darwin-OP’s locomotion
performance. When executing rotational commands, the robot consistently turned more
effectively to the left than to the right. In fact, the measured rotations to the right were often
very small, sometimes close to zero, despite the command duration being sufficient to expect
a much larger angular displacement. Moreover, the angular values obtained for 2-second and
4-second rotations were surprisingly similar, rather than scaling proportionally; ideally, a
4-second command should result in roughly double the rotation of a 2-second one. This lack
of linearity makes it difficult to predict motion outcomes solely based on command duration.

Translation during rotation further compounded the issue. Although some lateral displace-
ment is not unusual for bipedal robots, the expectation is that it should remain minimal and
relatively consistent. In practice, however, the robot exhibited significant variability in its
translational drift while turning, making it harder to model and compensate for in the control
layer. This inconsistency posed a greater challenge than the mere presence of drift itself, as it
undermined the repeatability of motion primitives.

Forward walking presented fewer asymmetries, but it was still affected by drift and angular
deviations. The robot rarely moved in a perfectly straight line, and deviations grew more
pronounced over longer walking intervals. Nevertheless, walking motions were somewhat more
predictable than rotations, which proved to be the most problematic primitive.

Despite these shortcomings, the experiments provided valuable average velocity estimates
that could be integrated into the control framework. Although the primitives themselves
lacked perfect repeatability, their mean behavior was sufficiently predictable to be combined
with visual feedback, ensuring that higher-level tasks such as object approach and alignment
remained feasible.

To address the inconsistencies observed in locomotion, a physical modification was intro-
duced to the robot’s design.

A 2 mm layer of neoprene rubber was affixed to the soles of the Darwin-OP’s feet with the
goal of increasing friction against the ground, as we can see in the figure 5.1. This adjustment
aimed to reduce unwanted slippage and thereby improve the repeatability and stability of the
robot’s movements.

The addition of the rubber layer had a significant impact on performance. Although minor
asymmetries between left and right rotations persisted, and the relationship between 2-second
and 4-second motion intervals was not perfectly linear, the overall variability was substantially
reduced. Rotations became more consistent, with measured angular velocities showing far less
deviation between trials, while forward walking showed improved stability and reduced drift.

In essence, the neoprene soles enhanced the robot’s interaction with the floor, mitigating the
most problematic effects of the original smooth metal design. The following results illustrate
this improvement, demonstrating smaller discrepancies across trials and more predictable
motion outcomes compared to the unmodified configuration.
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Figure 5.1: Picture of the Darwin-OP with the neoprene rubber feet.

Table 5.2: Results of motion experiments with neoprene soles. Each entry corresponds to (x, y, θ),
where x and y are translations (cm) and θ is rotation (degrees).

Command Trial 1 Trial 2 Trial 3
(Rotate right 4s) (-21, 14, -105º) (-22, 15, -120º) (-26, 15, -120º)
(Rotate right 2s) (-6, 14, -75º) (-11, 14, -75º) (-4, 11, -70º)
(Rotate left 4s) (14, 4, 140º) (22, 4, 140º) (17, 6, 130º)
(Rotate left 2s) (5, 10, 65º) (4, 11, 90º) (10, 18, 120º)
(Forward 4s) (-3, 63, -15º) (-4, 55, 0º) (6, 56, 0º)
(Forward 2s) (1, 30, 10º) (-2, 26, 20º) (-1, 15, 10º)

Another material tested was carpet.
As with the neoprene rubber, small pieces of carpet were fixed to the soles of the robot’s

feet with the goal of increasing friction against the ground surface. The intention was the same:
to reduce slippage during both walking and rotation, and thereby improve the consistency of
the robot’s locomotion. The following results summarize the robot’s performance with this
modification.
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Figure 5.2: Picture of the Darwin-OP with the green carpet feet.

Table 5.3: Results of motion experiments with carpet soles. Each entry corresponds to (x, y, θ), where
x and y are translations (cm) and θ is rotation (degrees).

Command Trial 1 Trial 2 Trial 3
(Rotate right 4s) (7, -13, -130º) (3, -12, -140º) (5, -13, -110º)
(Rotate right 2s) (5, -6, -65º) (4, -6, -90º) (7, -5, -90º)
(Rotate left 4s) (0, 8, 140º) (-1, 8, 140º) (0, 9, 145º)
(Rotate left 2s) (4, 1, 110º) (5, 4, 83º) (4, 0, 90º)
(Forward 4s) (45, -2, -10º) (50, -2, -20º) (42, 1, -5º)
(Forward 2s) (27, 2, -5º) (22, 1, -10º) (28, 1, -15º)

The introduction of carpet soles further improved the consistency of the robot’s locomotion
compared to both the bare metal and the neoprene rubber modifications. When examining the
rotation trials, the results show not only reduced variability between repeated tests, but also
a significant mitigation of the asymmetry observed earlier. In particular, the tendency of the
robot to rotate more effectively to the left than to the right, which was still somewhat visible
with neoprene, became much less pronounced with carpet. Forward walking also benefited:
translation values were much closer across repeated trials, and the resulting angular deviations
were smaller and more stable, typically staying within ±15°.

Overall, the carpet soles provided the highest level of consistency among all tested
configurations. While minor deviations remain unavoidable due to the nature of humanoid
locomotion on flat surfaces, this modification offered the most balanced performance, making
it a strong candidate for reliable motion planning and control.
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One other advantage the friction of these new soles provide us is the ability to more easily
increase the opening angle of the legs of the robot. Before, increasing this value too much
would be risky, as it greatly increases the risk of slipping sideways, which in our environement,
with some inclinitation and not much friction, would not be very safe. With this new soles
however, we can increase this range without as much risk. This is beneficial because opening
a bit the legs allows us to lower our center of mass, while still mantaining it in the pelvis area
of the robot.

5.5 Darwin Framework

Similar to the rest of the project, the control code running on the Darwin-OP is also
organized into distinct modules, each designed to encapsulate a specific functionality while
remaining flexible enough for adaptation.

One of the most important components is the Communication module. This module was
created to establish and manage the TCP/IP communication channel between the robots and
the central controller. Although the Darwin already comes with a built-in API that enables
this functionality, our custom implementation provided greater flexibility and allowed us to
tailor the communication layer to our specific needs. It includes functions for creating and
managing a TCP/IP server, connecting to that server, and sending or receiving messages
reliably. Because of this modular design, the Communication module could also be imported
by the ControlDarwin ROS package, enabling code reuse both on the robot and on the central
controller.

Another key addition is the MyJoints module, developed to simplify and streamline the
use of the Darwin’s API for low-level joint control, especially when interacting with the
CM730 interface. Instead of directly writing to memory via CM730 functions, which can be
cumbersome, this module introduces an abstraction layer that retains the benefits of direct
memory access while improving usability. It also provides higher-level functions for executing
custom complex motions, such as transitioning into the posture required to pick up the object.

In addition to these custom-built modules, two modules were adapted from Robotis’s
official Darwin-OP framework. The first is MyWalking, a modified version of the standard
Walking module. This module controls the robot’s joints during locomotion but was specifically
adapted in our work to allow the arms to move independently of the walking pattern. This
capability was essential for tasks involving object transportation, as it enabled the robot to
carry an object while maintaining stable gait.

The second adapted module is MyWalker, derived from the original BallFollower module.
Our version was extended to handle both autonomous behaviors and high-level commands from
the central controller. When operating in Autonomous Mode, MyWalker uses the centroid of
the detected object in the robot’s onboard camera feed to decide its movement (e.g., alignment
and approach). In normal operation, it interprets incoming commands such as “forward”
or “turn right” and maps them to appropriate walking actions. This design leverages the
MotionManager framework of the Darwin, ensuring smooth execution of locomotion primitives.
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Finally, the MyControl module acts as the primary orchestrator of the onboard control
system. It coordinates the other modules, using the Communication module to exchange
information with the central controller, while delegating motion execution to either the
MyJoints or MyWalker modules depending on the command received. By serving as the
integration point, MyControl ensures a coherent flow from high-level decisions to low-level
actuation.

5.5.1 Changing gait parameters

As the MyWalking mode was done with the Walking official Robotis module for walking
as a baseline, we could still use the tools developed for said module in ours. One of those
tools was the Walking Tuner. As the name implies, this was used to be able to configure
parameters for the Darwin-OP’s gait when walking. Some of the parameters included the
period of the steps, the height they should reach at the maximum, arm swing gain, step
forward/back ratio, hip height, etc. All of these parameters can make the gait more smooth
in different situtations, and it was very usefull in our project as well. As the robot needs to
carry some weight in it’s arms, it was useful to use the parameter Hip Pitch, to rotate the
torse slightly backwards, in hope of balancing with the object better. We also lowered the
hip height during walking, as well as the step height, lower the center of gravity and increase
stability. We increase the Y-offset (distance between feet - left/right) slightly as well, thanks
to the feet soles talked about previously, to slightly decrease the height of the COM. Lastly,
our change to the MyWalking module is similar to the parameters Arm Swing Gain, which
determines how much should the arms move to help balance during locomotion. In our case,
this value will be 0, and the arms will also have a different default value.

As the MyWalking module was developed using the official Robotis walking controller as its
foundation, we were able to maintain compatibility with several of the tuning and diagnostic
tools provided by Robotis. Among these, the Walking Tuner proved to be particularly
valuable. As its name suggests, this tool allows the user to configure and fine-tune various
gait parameters, enabling the robot to achieve smoother and more stable locomotion under a
wide range of conditions.

The Walking Tuner exposes a range of low-level parameters that directly influence
gait dynamics, including step period, maximum foot lift height, arm swing gain, step for-
ward/backward ratio, hip height, and others. Careful adjustment of these variables can
significantly improve balance, efficiency, and stabilit, especially when the robot operates under
atypical conditions such as carrying additional payloads or performing cooperative tasks.

In the context of this work, tuning these parameters was essential to compensate for
the additional weight distribution introduced by the object carried in the robot’s arms. For
instance, the hip pitch angle was slightly adjusted backward to counterbalance the forward-
shifted center of mass caused by the payload. We also lowered the hip height and reduced
the step height, both of which help decrease the overall center of gravity and improve static
and dynamic stability during locomotion. Similarly, the Y-offset (lateral distance between the
feet) was increased slightly, a change made feasible by the improved traction provided by the
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modified foot soles described earlier, further contributing to a lower and more stable center of
mass.

Finally, while the original walking module uses arm swing gain to dynamically balance
the robot during motion, in our implementation this parameter was effectively disabled (set
to zero) since the arms are used for carrying the object and must remain stable. Instead,
we defined a new default arm posture optimized for object transport, preventing unwanted
oscillations that could compromise grip or balance.

These adjustments, though subtle, had a significant cumulative effect on walking stability.
The robot’s gait became more predictable and resistant to disturbances, allowing it to maintain
balance more effectively while manipulating objects, a critical requirement for collaborative
tasks.

5.5.2 Kinematics

To facilitate the process of moving the Darwin-OP into specific and repeatable posi-
tions, such as picking up/putting down the object, kinematic modeling was employed—more
specifically, inverse kinematics (IK) on the MyJoints module. Instead of manually tuning
individual joint angles, IK provides a more intuitive way of defining motions by specifying
desired end-effector positions and allowing the solver to compute the corresponding joint
configurations.

For the lower body, inverse kinematics was applied to the legs in order to control the
position of the hips relative to the ground. To solve the inverse kinematics problem, we further
simplified the system to a planar RRR arm model, as our primary objective was to adjust the
vertical position while maintaining a constant value along the forward–backward axis. The
lateral (right–left) displacement was not considered critical in this context, since the robot’s
center of mass would remain aligned with the pelvic region regardless of small deviations in
that direction, assuming that both legs would make simetrical movements. By setting a target
hip height, we were able to more easily configure stable postures, ensuring consistency during
walking sequences and when transitioning into manipulation poses. This not only simplified
the tuning process but also provided a systematic way of compensating for small variations in
ground contact.

For the upper body, IK was developed to generate smoother and more natural trajectories
for the arms when reaching toward the object. In this case, we kept the Shoulder Roll joint
constant, modifying the problem into a classic RR planar arm configuration. This abstraction
introduced a minor loss of precision due to slight misalignments in the robot’s physical
structure, specifically, the elbow joint sits slightly lower than the shoulder joints in the neutral
position. However, this offset was minimal (less than 2 cm) and therefore considered negligible
for the purposes of our calculations, allowing us to safely proceed with the simplified model.
Rather than moving each joint independently, the IK formulation allowed the hands to follow
a continuous path in Cartesian space, improving the accuracy of grasping while maintaining
balance. This was particularly important for coordinated pickup motions, where both arms
must move symmetrically and remain synchronized with the rest of the body’s posture.
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By incorporating inverse kinematics into both leg and arm control, the robot’s motions
became more adaptable and easier to configure, reducing the time needed for trial-and-error
tuning while increasing the repeatability of key actions.

5.6 Cooperation

5.6.1 Synchronization

As the framework for controlling each robot individually was already established, the
development of the cooperative control framework was designed as an extension of that
foundation. This new layer builds upon the existing communication and motion control
architecture to enable synchronized, collision-free operation between multiple humanoid
robots.

In this configuration, a new coordination module was introduced. Unlike the single-robot
version, which only needs to receive the distance and direction of a robot relative to the
target object, this module processes the positions and orientations of all participating robots
simultaneously. This design choice was crucial for two reasons: first, to accurately predict and
prevent potential collisions between robots; and second, to ensure that both agents approach
the object in a consistent and coordinated manner. Relying solely on directional data, without
spatial context, would be insufficient for maintaining safe and synchronized trajectories.

Beyond spatial coordination, this module also addresses the challenge of temporal syn-
chronization. Due to hardware limitations, the internal clocks of the Darwin-OP robots
occasionally reset, making time-based synchronization unreliable. Additionally, since each
robot operates on its own onboard computer, the central controller has limited access to its
internal scheduling and thread management, further complicating real-time coordination.

To mitigate these issues, a lightweight synchronization strategy was implemented:
• Instead of transmitting commands to the robots immediately after computation, the

central controller stores them temporarily in a queue managed by the coordination
module.

• At fixed, predefined intervals, the module releases the queued commands to all robots
simultaneously, ensuring that actions begin in near-perfect temporal alignment.

This mechanism provides a practical form of synchronization, reducing inconsistencies
caused by communication latency or unsynchronized execution. It also complements the
pre-existing design constraint in which every motion command is limited to a maximum
duration of two seconds, ensuring that both robots operate within predictable time windows.
Together, these strategies create a robust foundation for synchronized dual-robot control,
enabling cooperative behaviors such as simultaneous approach, lifting, or transport of shared
objects.

5.6.2 Colision Avoidance

Once temporal synchronization between robots was achieved, the next step was to prevent
potential collisions during simultaneous motion. Although numerous sophisticated algorithms
exist for multi-agent trajectory planning, such as potential fields, velocity obstacles, or
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predictive trajectory optimization, we opted for a lightweight, deterministic approach consistent
with the overall philosophy of our system.

This solution leverages the same mechanism used for synchronization. Since all commands
are queued before being sent to the robots, the system can perform a preliminary trajectory
validation step to ensure that no conflicts exist between the planned motions of the agents.

The process begins with the synchronization queue, which temporarily holds all trajectory
commands awaiting execution. Each robot can have at most one pending trajectory in this
queue. A secondary validation queue is then maintained for trajectories confirmed to be
collision-free. Before a trajectory is promoted to this validation queue, it undergoes a simple
but effective set of checks:

The starting and ending points of each trajectory are evaluated against those of all other
robots, with a safety threshold applied to account for positional uncertainty. The paths
between these points are tested for intersections to ensure that the motion of one robot does
not cross into the predicted path of another.

This approach remains computationally efficient because, within our framework, all robot
commands correspond to simple primitives, either linear translations or in-place rotations.
For linear motions, trajectory intersections can be evaluated directly by testing the overlap of
line segments between start and end points. For rotations, the collision threshold is slightly
increased, since in practice the robot’s base does not rotate around a perfect fixed point and
may drift slightly due to surface friction.

If a trajectory passes validation, it is transferred from the synchronization queue to the
validated queue, from which it will later be executed. Trajectories that fail validation remain
in the synchronization queue until conditions change or the conflict is resolved. This two-
tiered system ensures that only collision-free, time-aligned commands are sent to the robots,
allowing the control framework to maintain safety and coordination without relying on heavy
computational models.

5.7 Conclusion

Together, these modules form a cohesive control architecture that balances modularity,
adaptability, and efficiency. By extending and customizing existing Robotis frameworks
while introducing new components tailored to the project’s requirements, the system ensures
robust communication, reliable locomotion, and seamless integration with both macro-level
commands from the central controller and local autonomy within the robot. This layered
approach not only facilitated the implementation of cooperative tasks in this work but also
provides a scalable foundation for future extensions, such as adding new behaviors, refining
motion primitives, or integrating more advanced decision-making strategies. Some of the
changes helped improve the stability of the robots on both locomotion and when executing
motions in place. However, they were not enough, and we were not able to achieve cooperative
object transportation with the 2 robots.
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CHAPTER 6
Conclusions and Future Work

6.1 Summary of Achievements

This section highlights what was accomplished throughout the thesis. You can structure
it either chronologically (by chapter) or by topic (Vision, Control, Experiments). Points
to include: Successful development of a two-layer vision framework combining external and
onboard cameras. Implementation of a modular control system with distributed processing
between the central controller and the robot. Integration of inverse kinematics to improve
motion precision and repeatability. Improvements in locomotion stability through hardware
adaptation (e.g., rubber or carpet soles). Validation of system performance through experi-
ments involving autonomous object approach and manipulation preparation. (Optional) End
this section with a small reflection on how the modular and scalable design supports future
multi-robot extensions.

Throughout this dissertation, a complete framework for the perception and control of
humanoid robots was developed, enabling them to autonomously approach and prepare for the
manipulation of a shared object. The work combined both global and local perception strategies
with modular control architectures, resulting in a flexible system capable of integrating multiple
robots and cameras with minimal reconfiguration.

In the vision subsystem, two complementary approaches were implemented: an external
camera providing global environmental awareness, and onboard cameras offering precise,
short-range perception. This dual-vision setup effectively mitigated the limitations inherent
to each method individually, improving positional accuracy at long range while maintaining
fine alignment close to the object. A series of visual markers and filtering techniques were
designed to overcome issues of reflectivity and color similarity, ensuring reliable detection of
both robots and objects even under suboptimal lighting conditions.

In the control subsystem, the project established a robust communication framework based
on TCP/IP, enabling synchronized command execution between the central controller and
each robot. Custom modules were implemented for motor actuation, walking, and motion
control, while the inclusion of an autonomous local control mode allowed each robot to operate
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independently once near its target. The integration of inverse kinematics in this subsystem also
improved motion control and repeatability. Experiments confirmed the system’s effectiveness
in reducing errors in approach and alignment, as well as improving motion stability through
gait parameter tuning and mechanical enhancements such as modified foot soles.

Overall, this work successfully demonstrated a modular, extensible architecture for hu-
manoid robot coordination, serving as a solid foundation for future research in collaborative
manipulation and multi-robot control.

6.2 Discussion and Limitations

Provide a critical assessment of the system’s performance. Discuss what worked well and
what limitations remain. Points you can include: The framework’s modularity and scalability
as a strength. The dependence on color filtering and its limitations under varying lighting
conditions. The occlusion problem when robots or objects block the external camera’s view.
Precision constraints of the Darwin-OP hardware and internal camera resolution. Challenges
in achieving perfect synchronization between robots during cooperative actions. This section
demonstrates that you understand the boundaries of your work — a key aspect for a strong
conclusion.

While the proposed framework achieved stable and reliable performance in enabling
humanoid robots to detect, approach, and align with an object, several limitations and
challenges remain that highlight opportunities for improvement.

From a vision standpoint, the system’s reliance on color-based filtering proved both effective
and restrictive. Although the use of color markers significantly improved detection robustness,
this approach remains sensitive to variations in lighting, reflections, and background color
similarities. Under changing illumination or when the markers were partially occluded, the
detection accuracy could decrease, affecting subsequent localization and control. Additionally,
since the external camera operated from a fixed position, depth perception was limited, which
could lead to small spatial estimation errors, especially when the robots or the object moved
outside the optimal visual range.

In terms of control, the modular architecture provided a clear structure for coordinating
motion commands, but some challenges arose from synchronization and mechanical constraints.
Because each Darwin-OP robot runs on an independent onboard controller, ensuring perfect
timing alignment between them was difficult, particularly given occasional clock resets and
minor network delays. This could result in slight desynchronization between the robots’ actions,
especially during dynamic or long-duration sequences. Although we were able to slightly
increase the stability of the robots while executing motions in place or during locomotion, it
was not enough to allow for cooperative object transportation.

Finally, while the current system handled single-object approach tasks effectively, scalabil-
ity and adaptability remain open challenges. The framework has the potential to accommodate
additional robots or sensory inputs, but this would require further optimization in commu-
nication efficiency, real-time coordination and better control modules. Similarly, while the
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control system supports preprogrammed and modular motions, it lacks adaptive feedback
mechanisms capable of responding to unexpected disturbances or dynamic object movement.

Despite these limitations, the framework established a strong experimental foundation.
The results demonstrated that with minimal sensing and computational resources, stable and
coordinated humanoid behavior can be achieved, paving the way for more advanced implemen-
tations that integrate learning-based control, sensor fusion, and collaborative manipulation.

6.3 Future Work

The work developed in this dissertation opens several promising directions for future
research, spanning both perception and control. Each of the proposed components, vision,
communication, and motion coordination, can be further refined and extended to enhance the
overall robustness and autonomy of the system.

In terms of vision, future work could focus on improving the accuracy and reliability of the
perception modules. The current approach, based primarily on color filtering, can be expanded
through the integration of additional classical computer vision techniques such as contour
detection, edge-based tracking, or background subtraction to mitigate the effects of lighting
variation and partial occlusions. Alternatively, a more modern route would involve adopting
deep learning-based detection models, such as convolutional neural networks or YOLO-style
architectures, to allow for more robust, generalizable object recognition. Such methods would
reduce the need for manual configuration of color parameters while maintaining real-time
processing capabilities.

Moreover, future research could explore sensor fusion between external and onboard
cameras, combining global and local perspectives in a more unified framework. This could
involve using visual–inertial odometry or integrating depth sensors to achieve better 3D
localization and orientation estimation in dynamic environments.

Regarding control, one major avenue for expansion lies in exploring heterogeneous robot co-
operation, involving robots of different sizes or morphologies. This would introduce additional
challenges in maintaining balance, synchronizing movement, and distributing forces when
manipulating or transporting shared objects. Addressing these challenges would contribute to
a deeper understanding of adaptive coordination in humanoid teams.

Further improvements could also be made by introducing learning-based control strategies.
Reinforcement learning or imitation learning could be used to optimize gait parameters,
improve balance under load, and enable the robots to autonomously refine their cooperative
behaviors through experience. Integrating such adaptive methods would reduce the need for
manual tuning and could lead to smoother, more energy-efficient motion.

Finally, the overall system could benefit from a transition toward more decentralized
coordination, where each robot maintains partial autonomy while still collaborating under a
shared objective. This would increase scalability and resilience, allowing additional robots to
be seamlessly integrated into the cooperative framework.
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